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Temporal Link Prediction Using Matrix and Tensor Factorizations

DANIEL M. DUNLAVY and TAMARA G. KOLDA, Sandia National Laboratories
EVRIM ACAR, National Research Institute of Electronics and Cryptology (TUBITAK-UEKAE)

The data in many disciplines such as social networks, Web analysis, etc. is link-based, and the link structure
can be exploited for many different data mining tasks. In this article, we consider the problem of temporal
link prediction: Given link data for times 1 through T, can we predict the links at time T + 1? If our
data has underlying periodic structure, can we predict out even further in time, i.e., links at time T +
2, T + 3, etc.? In this article, we consider bipartite graphs that evolve over time and consider matrix-
and tensor-based methods for predicting future links. We present a weight-based method for collapsing
multiyear data into a single matrix. We show how the well-known Katz method for link prediction can
be extended to bipartite graphs and, moreover, approximated in a scalable way using a truncated singular
value decomposition. Using a CANDECOMP/PARAFAC tensor decomposition of the data, we illustrate the
usefulness of exploiting the natural three-dimensional structure of temporal link data. Through several
numerical experiments, we demonstrate that both matrix- and tensor-based techniques are effective for
temporal link prediction despite the inherent difficulty of the problem. Additionally, we show that tensor-
based techniques are particularly effective for temporal data with varying periodic patterns.
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10:2 D. M. Dunlavy et al.

1. INTRODUCTION

The data in different analysis applications such as social networks, communication
networks, Web analysis, and collaborative filtering consists of relationships, which can
be considered as links, between objects. For instance, two people may be linked to each
other if they exchange emails or phone calls. These relationships can be modeled as a
graph, where nodes correspond to the data objects (e.g., people) and edges correspond
to the links (e.g., a phone call was made between two people). The link structure of the
resulting graph can be exploited to detect underlying groups of objects, predict missing
links, rank objects, and handle many other tasks [Getoor and Diehl 2005].

Dynamic interactions over time introduce another dimension to the challenge of
mining and predicting link structure. Here we consider the task of link prediction
in time. Given link data for T time steps, can we predict the relationships at time
T + 1? This problem has been considered in a variety of contexts [Hasan et al. 2006;
Liben-Nowell and Kleinberg 2007; Sarkar et al. 2007]. Collaborative filtering is also
a related task, where the objective is to predict interest of users to objects (movies,
books, music) based on the interests of similar users [Liu and Kou 2007; Koren et al.
2009]. The temporal link prediction problem is different from missing link prediction,
which has no temporal aspect and where the goal is to predict missing connections
in order to describe a more complete picture of the overall link structure in the data
[Clauset et al. 2008].

We extend the problem of temporal link prediction stated above to the problem of
periodic temporal link prediction. For such problems, given link data for T time steps,
can we predict the relationships at times T +1, T +2, . . . , T + L, where L is the length of
the periodic pattern? Such problems often arise in communication networks, such as
e-mail and network traffic data, where weekly or monthly interaction patterns abound.
If we can discover a temporal pattern in the data, temporal forecasting methods such
as Holt-Winters [Chatfield and Yar 1988] can be used to make predictions further out
in time.

Time-evolving link data can be organized as a third-order tensor, or multi-
dimensional array. In the simplest case, we can define a tensor Z of size M × N × T
such that

Z(i, j, t) =
{

1 if object i links to object j at time t,
0 otherwise.

It is also possible to use weights to indicate the strength of the links. The goal is to
predict the links at time T + 1 or for a period of time starting at T + 1 (e.g., for times
T + 1, . . . , T + L) by analyzing the link structure of Z.

Figure 1 presents an illustration of such temporal link data for the 1991–2000 DBLP
bibliometric data set, which contains publication data for a large number of profes-
sional conferences in areas related to computer science (described in more detail in
Section 4). The plot depicts the patterns of links between authors and conferences
over time, with blue dots denoting the links (i.e., values of 1 as just defined).

We consider both matrix- and tensor-based methods for link prediction. For the
matrix-based methods, we collapse the data into a single matrix by summing (with
and without weights) the matrices corresponding to the time slices. As a baseline,
we consider a low-rank approximation as produced by a truncated singular value
decomposition (TSVD). Next, we consider the Katz method [Katz 1953] (extended to
bipartite graphs), which has proven to be highly accurate in previous work on link pre-
diction [Huang et al. 2005; Huang and Lin 2009; Liben-Nowell and Kleinberg 2007];
however, it is not always clear how to make the method scalable. Therefore, we
present a novel scalable technique for computing approximate Katz scores based on a
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Fig. 1. DBLP data for 1991–2000.

truncated spectral decomposition (TKatz). For the tensor-based methods, we consider
the CANDECOMP/PARAFAC (CP) tensor decomposition [Carroll and Chang 1970;
Harshman 1970], which does not collapse the data but instead retains its natural
three-dimensional structure. Tensor factorizations are higher-order extensions of ma-
trix factorizations that capture the underlying patterns in multiway datasets and have
proved to be successful in diverse disciplines including chemometrics, neuroscience
and social network analysis [Acar and Yener 2009; Kolda and Bader 2009]. Moreover,
CP yields a highly interpretable factorization that includes a time dimension. In terms
of prediction, the matrix-based methods are limited to temporal prediction for a single
time step, whereas CP can be used in solving both single step and periodic temporal
link prediction problems.

There are many possible applications for link prediction, such as predicting the Web
pages a Web surfer may visit on a given day based on past browsing history, the places
that a traveler may fly to in a given month, or the patterns of computer network traffic.
We consider two applications for link prediction. First, we consider computer science
conference publication data with a goal of predicting which authors will publish at
which conferences in year T + 1 given the publication data for the previous T years.
In this case, we assume we have M authors and N conferences. All of the methods
produce scores for each (i, j) author-conference pair for a total of MN prediction scores
for year T + 1. For large values of M or N, computing all possible scores is impractical
due to the large memory requirements of storing all MN scores. However, we note
that it is possible to easily compute subsets of the scores. For example, these methods
can answer specific questions such as “Who is most likely to publish at the KDD con-
ference next year?” or “Where is Christos Faloutsos most likely to publish next year?”
using only O(M + N) memory. This is how we envision link prediction methods being
used in practice. Second, we consider the problem of how to predict links when peri-
odic patterns exist in the data. For example, we consider a simulated example where
data is taken daily over ten weeks. We should be able to recognize, for example, week-
day versus weekend patterns and use those in making predictions. If we consider a
scenario of users accessing various online services, we should be able to differentiate
between services that are heavily accessed on weekdays (e.g., corporate email) versus
those that are used mostly on weekends (e.g., entertainment services).
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1.1 Our Contributions

The main contributions of this article can be summarized as follows.

— Weighted methods for collapsing temporal data into a matrix are shown to outper-
form straight summation (inspired by the results in Sharan and Neville [2008]) in
the case of single step temporal link prediction.

— The Katz method is extended to the case of bipartite graphs and its relationship
to the matrix SVD is derived. Additionally, using the truncated SVD, we devise a
scalable method for calculating a “truncated” Katz score.

— The CP tensor decomposition is applied to temporal data. We provide both heuristic-
and forecasting-based prediction methods that use the temporal information ex-
tracted by CP.

— Matrix- and tensor-based methods are compared on DBLP bibliometric data in
terms of link prediction performance and relative expense.

— Tensor-based methods are applied to periodic temporal data with multiple period
patterns. Using a forecasting-based prediction method, it is shown how the method
can be used to predict forward in time.

1.2 Notation

Scalars are denoted by lowercase letters, for example, a. Vectors are denoted by bold-
face lowercase letters, for example, a. Matrices are denoted by boldface capital letters,
for example, A. The rth column of a matrix A is denoted by ar. Higher-order tensors
are denoted by boldface Euler script letters, for example, Z. The tth frontal slice of a
tensor Z is denoted Zt. The ith entry of a vector a is denoted by a(i), element (i, j) of a
matrix A is denoted by A(i, j), and element (i, j, k) of a third-order tensor Z is denoted
by Z(i, j, k).

1.3 Organization

The organization of this article is as follows. Matrix techniques are presented in
Section 2, including a weighted method for collapsing the tensor into matrix in
Section 2.1, the TSVD method in Section 2.2, and the Katz and TKatz methods
in Section 2.3. The CP tensor technique is presented in Section 3. Numerical re-
sults on the DBLP data set are discussed in Section 4 and on simulated periodic data
in Section 5. We discuss related work in Section 6. Conclusions and future work are
discussed in Section 7.

2. MATRIX TECHNIQUES

We consider different matrix techniques by collapsing the matrices over time into a
single matrix. In Section 2.1, we present two techniques (unweighted and weighted)
for combining the multi-year data into a single matrix. In Section 2.2, we present the
technique of using a truncated SVD to generate link scores. In Section 2.3, we extend
the Katz method to bipartite graphs and show how it can be computed efficiently using
a low-rank approximation.

2.1 Collapsing the Data

Suppose that our dataset consists of matrices Z1 through ZT of size M × N and the
goal is to predict ZT+1. The most straightforward way to collapse that data into a
single M × N matrix X is to sum all the entries across time, that is,

X(i, j) =
T∑

t=1

Zt(i, j). (1)
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Fig. 2. Plot of the decay function f (t) = (1 − θ )T−t for θ = 0.2 and T = 10.

We call this the collapsed tensor (CT) because it collapses (via a sum) the entries of
the tensor Z along the time mode. This is similar to the approach in Liben-Nowell and
Kleinberg [2007].

We propose an alternative approach to collapsing the tensor data, motivated by
Sharan and Neville [2008], where the link structure is damped backward in time
according to the following formula:

X(i, j) =
T∑

t=1

(1 − θ )T−t Zt(i, j). (2)

The parameter θ ∈ (0, 1) can be chosen by the user or according to experiments on
various training data sets. We call this the collapsed weighted tensor (CWT) because
the slices in the time mode are weighted in the sum. This gives greater weight to more
recent links. See Figure 2 for a plot of f (t) = (1 − θ )T−t for θ = 0.2 and T = 10.

The numerical results in Section 4 demonstrate improved performance using CWT
versus CT.

2.2 Truncated SVD

One of the methods compared in this article is a low-rank approximation of the matrix
X produced by (1) or (2). Specifically, suppose that the compact SVD of X is given by

X = U�VT, (3)

where R is the rank of X, U and V are orthogonal matrices of sizes M × R and N × R,
respectively, and � is a diagonal matrix of singular values σ1 ≥ σ2 ≥ · · · ≥ σR > 0.
It is well known that the best rank-K approximation of X is then given by the
truncated SVD

X ≈ UK�KVT
K, (4)

where UK and VK comprise the first K columns of U and V and �K is the K × K
principal submatrix of �. We can write (4) as a sum of K rank-1 matrices:

X ≈
K∑

k=1

σkukvT
k,

where uk and vk are the kth columns of U and V respectively. The TSVD is visualized
in Figure 3.

A matrix of scores for predicting future links can then be calculated as

S = UK�KVT
K . (5)
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Fig. 3. Illustration of the matrix TSVD.

We call these the Truncated SVD (TSVD) scores. Low-rank approximations based on
the matrix SVD have proven to be an effective technique in many data applications;
latent semantic indexing [Dumais et al. 1988] is one such example. This technique is
called “low-rank approximation: matrix entry” in Liben-Nowell and Kleinberg [2007].

2.3 Katz

The Katz measure [Katz 1953] is arguably one of the best link predictors available
because it has been shown to outperform many other methods [Liben-Nowell and
Kleinberg 2007]. Suppose that we have an undirected graph G(V, E) on P = |V| nodes.
Then the Katz score of a potential link between nodes i and j is given by

Ŝ(i, j) =
+∞∑
�=1

β�|path(�)
i, j |, (6)

where |path(�)
i, j | is the number of paths of length � between nodes i and j, and β ∈ (0, 1)

is a user-defined parameter controlling the extent to which longer paths are penalized.
The Katz scores for all pairs of nodes can be expressed in matrix terms as follows.

Let X̂ be the P × P symmetric adjacency matrix of the graph. Then the scores are
given by

Ŝ =
+∞∑
�=1

β�X̂
�

= (I − βX̂)−1 − I. (7)

Here I is the P × P identity matrix. If the graph under consideration has weighted
edges, X̂ is replaced by a weighted adjacency matrix.

We address two problems with the formulation of the Katz measure. First, the
method is not scalable because it requires the inversion of a P × P matrix at a cost of
O(P3) operations. We shall see that we can replace X̂ by a low-rank approximation in
order to compute the Katz scores more efficiently. Second, the method is only applica-
ble to square symmetric matrices representing undirected graphs. We show that it can
also be applied to our situation: a rectangular matrix representing a bipartite graph.

2.3.1 Truncated Katz. Assume X̂ has rank R ≤ P. Let the eigendecomposition of X̂ be
given by

X̂ = Ŵ�̂Ŵ
T
, (8)
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where Ŵ is a P × P orthogonal matrix1 and �̂ is a diagonal matrix with |λ̂1| ≥ |λ̂2| ≥
· · · ≥ |λ̂R| > λ̂R+1 = · · · = λ̂P = 0. Then the Katz scores in (7) become

Ŝ = (I − βŴ�̂Ŵ
T
)−1 − I

= Ŵ
[
(I − β�̂)−1 − I

]
Ŵ

T
= Ŵ�̂Ŵ

T
,

where �̂ is a P × P diagonal matrix with diagonal entries

γ̂p =
1

1 − βλ̂p
− 1 for p = 1, . . . , P. (9)

Observe that γ̂p = 0 for p > R. Therefore, without loss of generality, we can assume
that Ŵ and �̂ are given in compact form; that is, �̂ is just an R × R diagonal matrix
and Ŵ is a P × R orthogonal matrix.

This shows a close relationship between the Katz measure and the eigendecomposi-
tion and gives some hint as to how to incorporate a low-rank approximation. The best
rank-L approximation of X̂ is given by replacing �̂ in (8) with a matrix �̂L where all
but the L largest magnitude diagonal entries are set to zero. The mathematics car-
ries through as before, and the end result is that the Katz scores based on the rank-L
approximation are

Ŝ = ŴL�̂LŴ
T
L

where �̂L is the L × L principal submatrix of �̂, and ŴL is the P× L matrix containing
the first L columns of Ŵ.

Since it is possible to construct a rank-L approximation of the adjacency matrix in
O(L|E|) operations (using an Arnoldi or Lanczos technique [Saad 1992]), this tech-
nique can be applied to large-scale problems at a relatively low cost. We note that in
Liben-Nowell and Kleinberg [2007], Katz is applied to a low-rank approximation of the
adjacency matrix which is equivalent to what we discuss here, but its computation is
not discussed; specifically, the fact that it can be computed efficiently via the formula
above is not mentioned. Thus, we assume that calculation was done directly on the
dense low-rank approximation matrix given by

X̂L = ŴL�̂LŴ
T
L .

We contrast this with the approach of Wang et al. [2007], who discuss an approx-
imate Katz measure given by truncating the sum in (6) to the first L terms (they
recommend L = 4), that is, Ŝ =

∑4
�=1 β�X̂

�
; the main drawback of this approach is the

power matrices may be dense, depending on the connectivity of the graph.

2.3.2 Bipartite Katz and Truncated Bipartite Katz. Our problem is different than what we
have discussed so far because we are considering a bipartite graph, represented by
a weighted adjacency matrix from (1) or (2). This can be considered as a graph on
P = M + N nodes where the weighted adjacency matrix is given by

X̂ =

[
0 X

XT 0

]
.

1Recall that if W is an orthogonal matrix W, then WWT = WTW = I, W−1 = WT, and (WT)−1 = W.
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If X is rank R and its SVD is given as in (3), then the eigenvectors and eigenvalues of
X̂ are given by

Ŵ =

[
1√
2
U − 1√

2
U

1√
2
V 1√

2
V

]
and �̂ =

[
� 0
0 −�

]
.

Note that the eigenvalues in �̂ are not sorted by magnitude and the rank of X̂ is 2R.
Scaling the eigenvalues in �̂ as in (9), we get the 2R × 2R diagonal matrix �̂ with
entries

γ̂p =

⎧⎪⎪⎨
⎪⎪⎩

1
1 − βσp

− 1 for p = 1, . . . , R , and

1
1 + βσp−R

− 1 for p = R + 1, . . . , 2R.

The square matrix of Katz scores is then given by

Ŝ = Ŵ�̂Ŵ
T

=

[
U�+UT U�−VT

V�−UT V�+VT

]
,

where �− and �+ are diagonal matrices with entries

ψ−
p =

1
2

((
1

1 − βσp
− 1

)
−

(
1

1 + βσp
− 1

))
=

βσp

1 − β2σ 2
p

, and (10)

ψ+
p =

1
2

((
1

1 − βσp
− 1

)
+

(
1

1 + βσp
− 1

))
=

1
1 − β2σ 2

p
− 1, (11)

respectively, for p = 1, . . . , R. The link scores for the bipartite graph can be extracted
and are given by

S = U�−VT. (12)
We call these the Katz scores.

We can replace X by its best rank-K approximation as in (4), and the resulting Katz
scores then become

S = UK�−
KVT

K, (13)

where �−
K is the K × K principal submatrix of �−. We call these the Truncated Katz

(TKatz) scores. It is interesting to note that TKatz is very similar to using TSVD except
that the diagonal weights have been changed. Related methods for scaling have also
been proposed in the area of information retrieval [Bast and Majumdar 2005; Yan et al.
2008] where exponential scaling of singular values led to improved performance.

2.4 Computational Complexity and Memory

Computing a sparse rank-K TSVD via an Arnoldi or Lanczos method requires
O(nnz(X)) work per iteration where nnz(X) is the number of nonzeros in the adjacency
matrix X, which is equal to the number of edges in the bipartite graph. The num-
ber of iterations is typically a small multiple of K but cannot be known in advance.
The storage of the factorization requires only K(M + N + 1) space for the singular val-
ues and two factor matrices. Because TKatz is based on the TSVD, it requires the
same amount of computation and storage for a rank-K approximation. The only dif-
ference is that TKatz stores �−

K rather than �K . Katz, on the other hand, requires
O(M2N + MN2 + N3) operations to compute (7) if M > N. Furthermore, it stores all
of the scores explicitly, using O(MN) storage.
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Fig. 4. Illustration of the tensor CP model.

3. TENSOR TECHNIQUES

The tensor Z is three-way, so this lends itself to a multidimensional interpretation.
By analyzing this dataset using a three-way factorization, we can explicitly model the
time dimension and have no need to collapse the data as discussed in Section 2.1.

3.1 CP Tensor Model

One of the most common and useful tensor models is CP [Carroll and Chang 1970;
Harshman 1970]; see also reviews [Acar and Yener 2009; Kolda and Bader 2009].
Given a three-way tensor Z of size M × N × T, its K-component CP decomposition
is given by

Z ≈
K∑

k=1

λk ak ◦ bk ◦ ck. (14)

Here the symbol ◦ denotes the outer product2, λk ∈ R+, ak ∈ R
M, bk ∈ R

N, and ck ∈ R
T

for k = 1, . . . , K. Each summand (λk ak ◦ bk ◦ ck) is called a component, and the indi-
vidual vectors are called factors. We assume ‖ ak ‖ =

∥∥ bk
∥∥ = ‖ ck ‖ = 1 and therefore

λk contains the scalar weight of the kth component. An illustration of CP is shown in
Figure 4.

The CP tensor decomposition can be considered an analogue of the SVD because
it decomposes a tensor as a sum of rank-one tensors just as the SVD decomposes a
matrix as a sum of rank-one matrices as shown in Figure 3. Nevertheless, there are
also important differences between these decompositions. The columns of U and V
are orthogonal in the SVD while there is no orthogonality constraint in the CP model.
Despite the CP model’s lack of orthogonality, Kruskal [1989] has shown that CP compo-
nents are unique, up to permutation and scaling, under mild conditions. It is because
of this property that we use CP model in our studies. The uniqueness of CP enables
the use of factors directly for forecasting as discussed in Section 3.3. On the other
hand, some other tensor models such as Tucker [1963, 1966] suffers from rotational
freedom and factors in the time mode, thus the forecasts, can easily change depending
on the rotation applied to the factors. We leave whether or not such models would be
applicable for link prediction as a topic of future research.

3.2 CP Scoring Using a Heuristic

We make use of the components extracted by the CP model to assign scores to each
pair (i, j) according to their likelihood of linking in the future. The outer product of
ak and bk, i.e., akbT

k , quantifies the relationship between object pairs in component k.

2A three way outer product is defined as follows: X = a ◦ b ◦ c means X(i, j, k) = a(i)b( j)c(k).
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The temporal profiles are captured in the vectors ck. Different components may have
different trends, for example, they may have increasing, decreasing, or steady profiles.
In our heuristic approach, we assume that average activity in the last T0 = 3 years is
a good choice for the weight. We define the similarity score for objects i and j using a
K-component CP model in (14) as the (i, j) entry of the following matrix:

S =
K∑

k=1

γkλkakbT
k, where γk =

1
T0

T∑
t=T−T0+1

ck(t). (15)

This is a simple approach, using temporal information from the last T0 = 3 time steps
only. In many cases, the simple heuristic of just averaging the last few time steps
works quite well and is sufficient. An alternative that provides a more sophisticated
use of time is discussed in the next section.

3.3 CP Scoring Using Temporal Forecasting

Alternatively, we can use the temporal profiles computed by CP as a basis for predict-
ing the scores in future time steps. In this work, we use the Holt-Winters forecasting
method [Chatfield and Yar 1988], which is particularly suitable for time-series data
with periodic patterns. This is an automatic method which only requires the data and
the expected period (e.g., we use L = 7 for daily data with weekly periods). As will be
shown in Section 5, the Holt-Winters method is fairly accurate in picking up patterns
in time and therefore can be used as a predictive tool. If we are predicting for L time
steps in the future (one period), we get a tensor of prediction scores of size M × N × L.
This is computed as

S =
K∑

k=1

λkak ◦ bk ◦ γk, (16)

where each γk is a vector of length L that is the prediction for the next L time steps
from the Holt-Winters methods with ck as input.

For our studies, we implemented the additive Holt-Winters method (as described in
Chatfield and Yar [1988]), that is, Holt’s linear trend model with additive seasonality,
which corresponds to an exponential smoothing method with additive trend and addi-
tive seasonality. For a review of exponential smoothing methods, see Gardner [2006].
An example of forecasting using additive Holt-Winters is shown in Figure 5: the input
is shown in blue, and the prediction of the next L = 7 time steps is shown in red. We
show examples in Section 5 that use the actual CP data as input. Forecasting meth-
ods besides the Holt-Winters method have also proven useful in analyzing temporal
data [Makridakis and Hibon 2000]. Work on the applicability of different forecasting
methods for link prediction is left for future work.

3.4 Computational Complexity and Memory

The computational complexity of CP is O(nnz(Z)) per iteration. As with TSVD, we
cannot predict the number of iterations in advance. The storage required for CP is
K(M + N + T + 1), for the three factor matrices and the scalar λk values.

4. EXPERIMENTS WITH LINK PREDICTION FOR ONE TIME STEP

We use the DBLP dataset3 to assess the performance of various link predictors dis-
cussed in Section 2 and Section 3. All experiments were performed using Matlab 7.8

3http://www.informatik.uni-trier.de/∼ley/db/index.html
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Fig. 5. An illustration of the predictions produced by the additive Holt-Winters method on data with a
period of L = 7.

on a Linux Workstation (RedHat 5.2) with 2 Quad-Core Intel Xeon 3.0GHz processors
and 32GB RAM. We compute the CP model via an Alternating Least Squares (ALS)
approach using the Tensor Toolbox for Matlab [Bader and Kolda 2007].

4.1 Data

At the time the DBLP data was downloaded for this work, it contained publications
from 1936 through the end of 2007. Here we only consider publications of type inpro-
ceedings between 1991 and 20074.

The data is organized as a third-order tensor Z of size M × N × T. We let C(i, j, t)
denote the total number of papers by author i at conference j in year t. In order to
decrease the effect of large numbers of publications, we preprocess the data so that

Z(i, j, t) =
{

1 + log(C(i, j, t)) if C(i, j, t) > 0,

0 otherwise.

Using a sliding window approach, we divide the data into seven training/test sets such
that each training set contains T = 10 years and the corresponding test set contains
the following 11th year. Table I shows the size and density of the training and testing
sets. We only keep those authors that have at least 10 publications (i.e., an average
of one per year) in the training data, and each test set contains only the authors and
conferences available in the corresponding training set.

4.2 Interpretation of CP

Before addressing the link prediction problem, we first discuss how to use the CP
model for exploratory analysis of the temporal data. The primary advantage of the CP

4The publications between 1936 and 1990 comprise only 6% of publications of type inproceedings.
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Table I. Training and Test Set Pairs Formed from the DBLP Dataset

Training Test Authors Confs. Training Links Test Links Test New Links
Years Year (% Density) (% Density) (% Density)
1991-2000 2001 7108 1103 112,730 (0.14) 12,596 (0.16) 5,079 (0.06)
1992-2001 2002 8368 1211 134,538 (0.13) 16,115 (0.16) 6,893 (0.07)
1993-2002 2003 9929 1342 162,357 (0.12) 20,261 (0.15) 8,885 (0.07)
1994-2003 2004 11836 1491 196,950 (0.11) 27,398 (0.16) 12,738 (0.07)
1995-2004 2005 14487 1654 245,380 (0.10) 35,089 (0.15) 16,980 (0.07)
1996-2005 2006 17811 1806 308,054 (0.10) 40,237 (0.13) 19,379 (0.06)
1997-2006 2007 21328 1934 377,202 (0.09) 41,300 (0.10) 20,185 (0.05)

model is its interpretability, as illustrated in Figure 6, which contains three example
components from the 50-component CP model of the tensor representing publications
from 1991 to 2000. The factor ak captures a certain group of authors, while bk extracts
the conferences where the authors captured by ak publish. Finally, ck corresponds
to the temporal signature depicting the pattern of the publication history of those
authors at those conferences over the associated time period. Therefore, the CP model
can address the link prediction problem well by capturing the evolution of the links
between objects using the factors in the time mode.

Figure 6(a) shows the third component with authors (ak) in the top plot, conferences
(bk) in the middle, and time (ck) on the bottom. The highest scoring conferences are
DAC, ICCAD and ICCD, which are related conferences on computer design. Many au-
thors publish in these conferences between 1991 and 2000, but the top are Vincentelli,
Brayton, and others listed in the caption. This author/conference combination has a
peak in the early 1990s and starts to decline in mid-’90s. Note that the author and
conference scores are mostly positive. Figure 6(b) shows another example component,
which actually has very similar conferences to those in the component previously dis-
cussed. The leading authors, however, are different. Moreover, the time profile is
different with an increasing trend after the mid-’90s. Figure 7 shows a component
that detects related conferences that take place only in even years. Again we see that
the components are primarily positive. A nice feature of the CP model is that it does
not have any constraints (like orthogonality in the SVD) that artificially impose a need
for negative entries in the components.

4.3 Methods and Parameter Selection

The goal of a link predictor in this study is to predict whether the ith author is going to
publish at the jth conference during the test year. Therefore, each nonzero entry in the
test set is treated as 1, that is, a positive link, regardless of the actual number of pub-
lications; otherwise, it is 0 indicating that there is no link between the corresponding
author-conference pair.

The common parameter for all link predictors, except Katz-CT/CWT, is the number
of components, K. In our experiments, instead of using a specific value of K, which
cannot be determined systematically, we use an ensemble approach. Let SK denote
the matrix of scores computed for K = 10, 20, . . . 100. Then the matrix of ensemble
scores, S, used for link prediction is calculated as

S =
∑

K∈{10,20,...100}

SK∥∥ SK
∥∥

F

.
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Fig. 6. Examples from 50-component CP model of publications from 1991 to 2000.

In addition to the number of components, the parameter β used in the Katz scores
in (12) and (13) needs to be determined. We use β = 0.001, which was chosen such
that ψ−

p > 0 for all p = 1, . . . , R in (10) for the data in our experiments. We have
observed that if ψ−

p < 0 then the scores contain entries with large magnitudes but
negative values, which degrades the performance of Katz measure. Finally, θ is the
parameter used for weighting slices while forming the CWT in (2). We set θ = 0.2
according to preliminary tests on the training data sets. We use the heuristic scoring
method discussed in Section 3.2 for CP.
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Fig. 7. Factors from component 46 of 50-component CP model of publications from 1991 to 2000: Top au-
thors are Franz Baader, Henri Prade, Didier Dubois, and Bernhard Nebel. Top conferences are ECAI and
KR.

4.4 Link Prediction Results

Two experimental setups are used to evaluate the performance of the methods.

Predicting All Links. The first approach compares the methods in terms of how
well they predict positive links in the test set.
Predicting New Links. The second approach addresses a more challenging prob-
lem, that is, how well the methods predict the links that have not been previously
seen at any time in the training set.

As an evaluation metric for link prediction performance, we use the area under the
receiver operating characteristic curve (AUC) because it is viewed as a robust measure
in the presence of imbalance [Stager et al. 2006], which is important since less than
0.2% of all possible links exist in our testing data. Figure 8 shows the performance of
each link predictor in terms of AUC when predicting all links (blue bars) and new links
(red bars). As expected, the AUC values are much lower for the new links. Among all
methods, the best performing method in terms of AUC is Katz-CWT. Further, CWT is
consistently better on average than the corresponding CT methods, which shows that
giving more weight to the data in recent years improves link prediction.

In Figure 9, we show the ROC (receiver operating characteristic) curves; for the pur-
poses of clarity, we omit the CT results. When predicting all links, Figure 9(a) shows
that all methods perform similarly initially, but Katz-CWT is best as the false positive
rate increases. TKatz-CWT and TSVD-CWT are only slightly worse than Katz-CWT.
Finally, CP starts having false positives earlier than the other methods. Figure 9(b)
shows the behavior for just the new links. In this case, the relative performance of the
algorithms is mostly unchanged.

In order to understand the behavior of different link predictors better, we also com-
pute how many correct links (true positives) are in the top 1000 scores predicted by
each method. Table II shows that CP, TSVD-CWT, TKatz-CWT and Katz-CWT achieve
close to 75% accuracy over all links. The accuracy of the methods goes down to 10% or
less when we remove all previously seen links from the test set, but this is still very
significant. Although 10% accuracy may seem low, this is still two orders of magnitude
better than what would be expected by chance (0.1%) due to high imbalance in the
data (see the last column of Table I). Note that the best methods in terms of AUC,
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Fig. 8. Average link prediction performance of each method across all seven training/test set pairs (black
bars show absolute range).

Fig. 9. Average ROC curves showing the performance of link prediction methods across all training/test
sets.

that is, Katz-CT and Katz-CWT, perform worse than CP, TSVD-CWT and TKatz-CWT
for predicting new links. We also observe that CP is among the best methods when
we look at the top predictions even if it starts giving false positives earlier than other
methods.

The matrix-based methods (TSVD, TKatz and Katz) are quite fast relative to the
CP method. Average timings across all training sets are TSVD-CT/CWT and TKatz-
CT/CWT: 61 sec.; Katz-CT: 80 sec.; Katz-CWT: 74 sec.; and CP: 1300 sec. Note that for
all but the Katz method, the times reflect the computation of models using ranks of
K = 10, 20, . . . 100. For the Katz method, a full SVD decomposition is computed, thus
making the method too computationally expensive for very large problems.

5. EXPERIMENTS WITH LINK PREDICTION FOR MULTIPLE TIME STEPS

As might be evident from Figures 6 and 7, the utility of tensor models is in their ability
to reveal patterns in time. In this section, we use synthesized data to explore the
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Table II. Correct Predictions in Top 1000 Scores

Test CP TSVD TSVD TKatz TKatz Katz Katz
Year -CT -CWT -CT -CWT -CT -CWT

All Links

2001 671 617 685 617 686 625 709
2002 668 660 674 659 674 658 716
2003 723 697 743 693 745 715 754
2004 783 726 777 721 776 719 774
2005 755 716 776 720 775 700 781
2006 807 729 801 731 800 698 796
2007 721 681 755 687 754 647 724

Mean 733 689 744 690 744 680 750

New Links

2001 87 80 104 80 104 51 56
2002 97 84 124 84 124 74 81
2003 78 80 96 75 97 55 62
2004 99 79 105 81 105 57 69
2005 116 89 117 88 117 58 69
2006 91 77 110 77 109 63 70
2007 83 71 95 73 99 43 42

Mean 93 80 107 80 107 57 64

ramifications of temporal predictions in situations where there are several different
periodic patterns in the data. In particular, Figure 7 shows an every other year pattern
in the data, but this is not exploited in the predictions in the last section based on the
heuristic score in (15). In the DBLP dataset, periodic time profiles were few and did
not have noticeable impact on performance. Here we simulate the type of data where
bringing the time pattern information into play is crucial for predictions. Our goal is
to use the periodic information, predicting even further out in time. For example, if we
assume that our training data is for times t = 1, . . . , T and that the period in our data
is of length L, then we can predict connections for time periods T + 1 through T + L. In
this section, we present results of experiments involving link prediction for multiple
time steps. All experiments were performed using Matlab 7.9 on a Linux Workstation
(RedHat 5.2) with 2 Quad-Core Intel Xeon 3.0GHz processors and 32GB RAM.

5.1 Data

We generate simulated data that shows connections between two sets of entities over
time. In the DBLP data, the entity sets were authors and conferences, and each time
t = 1, . . . , T corresponded to one year of data. In our simulated example, we assume
that each time t corresponds to one day and that the temporal profiles correspond
roughly to a seven-day period (L = 7). We might assume that the entities are users and
services. For example, most major service providers (Yahoo, Google, MSN, etc.) have
a front page. We may wish to predict which users will likely be connecting to which
services over time. It may be that there are groups of people that check the National,
World, and Business News on weekdays; another group that checks Entertainment
Listings on weekends; a group that checks Sports Scores on Mondays; another group
uses the service for email every day, etc. Each of these groupings of users and services
along with corresponding temporal profile can be represented by a single component in
the tensor model. The motivation for link prediction are manyfold. We might want to
characterize the temporal patterns so that we know how often to update the services
or when to schedule down time. We may use prediction to cache certain data, to better
direct advertisements to users, etc. In addition to the business model/motivation, we
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Fig. 10. Example distribution of the number of nonzeros per row in entity participation matrices.

could also consider the application of cybersecurity using analysis of network traffic
data. In this case, the goal is to determine which computers are most likely to contact
which other computers. Predicted links could be used to find anomalous or malicious
behavior, proactively load balance, etc. In all of these applications, accurately predict-
ing links over multiple time steps is crucial.

We assume that our data can be modeled by K = 10 components and generate our
training and testing tensors as follows.

(1) Matrices A and B of size M × K and N × K are “entity participation” matrices.
In other words, column ak (resp. bk) is the vector of participation levels of all the
entities in component k. In our tests, we use M = 500 and N = 400. Each row is
generated by choosing between 1 and K components for the entity to participate
in where the probability of participating in at least k + 1 components is 1 − 4k.
An example of the distribution of participation is shown in Figure 10; note that
most entities participate in just one component. Once the number of components
is decided, the specific components that a given entity participates in are chosen
uniformly at random. The strength of participation is picked uniformly at random
between 1 and 10. Finally, the columns of A and B are normalized to length 1.

(2) In the third mode, the matrix corresponds to time. We assume we have P periods of
training data, so that we have T = L P time observations to train on. In our tests,
we use L = 7 and P = 10. We also assume that we have 1 period of testing data.
Therefore, we generate a matrix C of size L(P + 1) × K, which will be divided into
submatrices C[train] and C[test]. Each column of C is temporal data of length L(P+1)
with a repeating period of length L = 7. We use the periodic patterns shown in
Figure 11. For example, the first patten corresponds to a weekday pattern, and the
seventh pattern corresponds to Tuesday/Thursday activities. Patterns 1 and 5 are
the same but correspond to different sets of entities and so will still be computable
in our experiments.
The creation of the temporal data is shown in Figure 12. As shown at the top, in
order to generate the temporal data of length L(P + 1), we repeat the temporal
pattern P + 1 times. Next, for each of the K = 10 components, we randomly adjust
the data to be increasing, decreasing, or neutral. On the left in the middle plot,
we show a decreasing pattern and on the right an increasing pattern. Finally, we
add 10% noise, as shown in the lower plots. The final matrix C is column normal-
ized. The first T = L P = 70 rows become C[train] and the last L = 7 rows become
C[test].
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Fig. 11. Weekly patterns of users in simulated data.

(3) We create noise-free versions of the training and testing tensors by computing

Z[train] =
K∑

k=1

ak ◦ bk ◦ c[train]
k and Z[test] =

K∑
k=1

ak ◦ bk ◦ c[test]
k .

In order to make the problem challenging, we significantly degrade the training
data in the next two steps.

(4) We take pswap = 50% of the ptop = 25% largest entries in Z[train] and randomly swap
them with other entries in the tensor selected uniformly at random. This has the
effect of removing some important data (i.e., large entries) and also adding some
spurious data.

(5) Finally, we add prand = 10% percent standard normal noise to every entry of Z[train].

For each problem instance, we compute a CP decomposition of Z[train] which has had
large entries swapped and noise added. Then we use the resulting factorization to
predict the largest entries of Z[test].

5.2 Methods and Parameter Selection

The goal of this study is to predict the significant entries in Z[test]. Therefore, without
loss of generality, we treat all nonzeros in the test tensor as ones (i.e., positive links)
and the rest as zeros (i.e., no link). This results in 15% positives.

We consider the CP model (with K = 10 components) using the forecasting scoring
model described in Section 3.3. The model parameters for level, trend and seasonality
are set to 0.2 in the Holt-Winters method. We compute the CP model via the CPOPT
approach as described in Acar et al. [2010]. This is an optimization approach using the
nonlinear conjugate gradient method. We set the stopping tolerance on the normalized
gradient to be 10−8, the maximum number of iterations to 1000, and the maximum
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Fig. 12. Steps to creating the temporal data.

number of function values to 10,000. The models could have been computed using ALS
as in the previous section, but here we use a different technique for variety.

The matrix methods described in Section 2 are not appropriate for this data because
simply collapsing the data will obviously not work. Moreover, there is no clear method-
ology for predicting out in time. The best we could possibly do would be to construct
a matrix model for each day in the week (i.e., one for each � = 1, . . . , L). Such an
approach, however, is not parsimonious and would quickly become prohibitive as the
number of models grew. Moreover, it would be extremely difficult to assimilate results
across the different models for each day.

Therefore, as a comparison, we use the largest values from the most recent period.
In MATLAB notation, the predictions are based on Z[train](:, :, L(P − 1) + 1 : L P), that
is, the last L frontal slices of Z[train]. The highest values in that period are predicted
to reappear in the testing period. We call this the Last Period method. Under the
scenario considered here, this is an extremely predictive model when the noise levels
are low. As we randomly swap data (reflective of random additions and deletions as
would be expected in any real world data set), however, the performance of this model
degrades.

5.3 Interpretation of CP Results and Temporal Prediction

As we have mentioned, we compute the CP factorization of a noisy version of Z[train]

of size 500 × 400 × 70. Because the data is noisy (swapping 50% of the 25% largest
entries and adding 10% Gaussian noise), the fit of the model to the data is not perfect.
In fact, the percentage of the Z[train] that is described by the model5 is only about 50%
(averaged over 10 instances).

However, the underlying low-rank structure of the data gives us hope of recovery
even in the presence of excessive errors. We can see this in terms of the factor match

5The percentage of the data described by the model is calculated as 1 − ‖M− Z[train]‖/‖Z[train]‖ where M is
the CP model.
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score (FMS), which is defined as follows. Let the correct and computed factorizations
be given by

K∑
k=1

λk ak ◦ bk ◦ ck and
K∑

k=1

λ̄k āk ◦ b̄k ◦ c̄k,

respectively. Without loss of generality, we assume that all the vectors have been
scaled to unit length and that the scalars are positive. Recall that there is a permu-
tation ambiguity, so all possible matchings of components between the two solutions
must be considered. Under these conditions, the FMS is defined as

FMS = max
σ∈	(K)

1
K

K∑
k=1

(
1 − |λr − λ̄σ (k)|

max{λr, λ̄σ (k)}
)

|aT
kāσ (k)||bT

kb̄σ (k)||cT
k c̄σ (k)|. (17)

The set 	(K) consists of all permutations of 1 to K. In our case, we just use a greedy
method to determine an appropriate permutation. The FMS can be between 0 and 1,
and the best possible FMS is 1. For the problems mentioned above, the FMS scores
are around 0.52 on average; yet the predictive power of the CP model is very good (see
Section 5.4).

Figure 13 shows the ten different temporal patterns in the data per the ck vectors.
The green line is the original unaltered data, the first portion of which is used to
generate the training data. The blue line is the pattern that is extracted via the CP
model. Note that it is generally a good fit to the true data shown in green. Finally,
the red line is the prediction generated by the Holt-Winters method using the pattern
extracted by CP (i.e., the blue line). The red data corresponds to the γk vectors used
in (16) for link prediction. The results of the link prediction task are discussed in the
next subsection.

5.4 Link Prediction Results

In Figure 14, we present typical ROC curves for the predictions of the next L = 7 time
steps (one period) for a problem instance generated using the procedure mentioned
previously. As described in Section 5.2, our goal is to predict the nonzero entries in
the testing data Z[test] based on the CP model and the score in (16). We compare with
the predictions based on the last period in the data. Despite the high level of noise,
the CP method is able to get an AUC score of 0.845, which is much better than then
the “Last Period” method’s score of 0.686. We also considered the accuracy in the first
1,000 values returned. The CP-based method is 100% accurate in its top 1,000 scores
whereas the “Last Period” method is only 70% accurate.

To investigate the effect of noise on the performance of the CP and Last Period
methods, we ran several experiments varying the different amounts of noise (ptop,
pswap, and prand). For each experiments, we fixed all but one type of noise, varying the
remaining type of noise. The fixed values for each type of noise were the same as those
for the experiment described above, while varying ptop up to 30%, pswap up to 80%, and
prand up to 40%. For each level of noise, we generated 10 instances of Z[train] and Z[test]

and computed the average AUC and percentage of links correctly predicted in the top
1000 scores.

Figure 15 shows the results of the experiments when varying pswap. As expected,
AUC values decrease as the number of the most significant links in the training data
being swapped randomly is increased. However, there is a clear advantage of the CP
method over the Last Period method as depicted in Figure 15(a). Note also that in
Figure 15(b), we see that even as the number of randomly swapped significant links is
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Fig. 13. Temporal patterns using Holt-Winters forecasting. The green line is the “true” data. The blue line
is the temporal pattern that is computed by CP. The red line is the pattern that is predicted by Holt-Winters
using the temporal pattern computed by CP.

increased in the training data, the top 1000 scores predicted with the CP method are
all correctly identified as links. For the Last Period method, performance decreases
as pswap increases, highlighting a clear advantage of the CP method. Figure 16 and
Figure 17 present the results for the experiments where ptop and prand were varied,
respectively. In both sets of experiments, the CP method consistently performed better
than the Last Period method in terms of both AUC and correct predictions in the top
1000 scores for each method. However, no significant changes were detected across the
different levels of ptop and prand.

The key conclusions from these experiments is that the CP model performs
extremely well even when a large percentage of the strongest signals (i.e., link
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Fig. 14. ROC curves and AUC scores for typical problem of predicting links seven steps forward in time.

Fig. 15. Impact of varying swapping noise (pswap) averaged over 10 runs per noise value.

information) in the training data is altered. Such robustness is crucial for applications
where noise or missing data is common, for example, analysis of computer network
traffic where data is lost or even hidden in the context of malicious behavior or the
analysis of user-service relationships where both user and service profiles are chang-
ing over time.

Results for different sizes of tensors illustrate that these conclusions hold for larger
datasets as well. Figure 18 presents plots of (a) the time required to compute the
CP models and Holt-Winters forecasts and (b) the AUC scores for predicting seven
steps out in time for tensors of sizes 125 × 100 × 77, 250 × 200 × 77, 500 × 400 × 77,
1000 × 800 × 77, and 2000 × 1600 × 77. For each size, 10 tensors were generated using
the procedures in Section 5.2, and the box and whiskers plots in Figure 18 present
the median (red center mark of boxes), middle quartile (top and bottom box edges),
and outlier (red plus marks) summary statistics across the experiments. These results
support the conclusions above: predictions using the CP model are more accurate than
those computed using the last period to predict an entire period of links.
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Fig. 16. Impact of varying random noise (ptop) averaged over 10 runs per noise value.

Fig. 17. Impact of varying random noise (prand) averaged over 10 runs per noise value.

6. RELATED WORK

Getoor and Diehl [2005] present a survey of link mining tasks, including node classi-
fication, group detection, and numerous other tasks including link prediction. Sharan
and Neville [2008] consider the goal of node classification for temporal-relational data,
suggesting the idea of a “summary graph” of weighted snapshots in time which we
have incorporated into this work.

The seminal work of Liben-Nowell and Kleinberg [2007] examines numerous meth-
ods for link prediction on coauthorship networks in arXiv bibliometric data. However,
temporal information was unused (e.g., as in Sharan and Neville [2008]) except for
splitting the data. The proportion of new links ranged from 0.1–0.5% and is thus
comparable to what we see in our data (0.05–0.07%). According to Liben-Nowell and
Kleinberg, Katz and its variants are among the best link predictors; this observa-
tion has been supported by other work as well [Huang et al. 2005; Wang et al. 2007].
We note that Wang et al. [2007] use the truncated sum approximate Katz measure
discussed in Section 2.3 and recommend AUC as one evaluation measure for link pre-
diction because it does not require any arbitrary cut-off. Rattigan and Jensen [2005]
contend that the link mining problem is too difficult, in part because the proportion
of actual links is very small compared to the number of possible links; specifically,
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Fig. 18. Results of computing 10 CP models and Holt-Winters forecasts for tensors of different sizes: 125 ×
100×77 (M=125); 250×200×77 (M=250); 500×400×77 (M=500); 1000×800×77 (M=1000); 2000×1600×77
(M=2000). Computation wall clock times in seconds are shown in (a) and AUC scores are shown in (b).

they consider coauthor relationships in DBLP data and observe that the proportion of
new links is less than 0.01%. (Although we also use DBLP data, we consider author-
conference links that have 0.05% or more new links.)

Another way to approach link prediction is to treat it as a straightforward classi-
fication problem by computing features for possible links and using a state-of-the-art
classification engine like support vector machines. Al Hasan et al. [2006] use this ap-
proach in the task of author-author link prediction. They randomly pick equal sized
sets of linked and unlinked pairs of authors. They compute features such as keyword
similarity, neighbor similarity, shortest path, etc. However, it would likely be com-
putationally intractable to use such a method for computing all possible links due to
the size of the problem and imbalance between linked and unlinked pairs of authors.
Clauset et al. [2008] predict links (or anomalies) using Monte-Carlo sampling on all
possible dendrogram models of a graph. Smola and Kondor [2003] identify connec-
tions between link prediction methods and diffusion kernels on graphs but provide no
numerical experiments to support this.

Modeling the time evolution of graphs has been considered, for example, by Sarkar
et al. [2007], who create time-evolving cooccurrence models that map entities into an
evolving latent space. Tong et al. [2008] also compute centrality measures on time
evolving bipartite graphs by aggregating adjacency matrices over time in similar ap-
proaches to those in Section 2.1.

Link prediction is also related to the task of collaborative filtering. In the Netflix
contest, for example, Bell and Koren [2007] consider the “binary view of the data” as
important as the ratings themselves. In other words, it is important to first predict
who is likely to rate what before focusing on the ratings. This was a specific task in
KDD Cup 2007 [Liu and Kou 2007]. More recent models by Koren [2009] explicitly
account for changes in user preferences over time. And Xiong et al. [2010] propose
a probabilistic tensor factorization to address the problem of collaborative filtering
over time.

Tensor factorizations have been previously applied in Web link analysis [Kolda et al.
2005] and also in social networks for the analysis of chatroom [Acar et al. 2006] and
email communications [Bader et al. 2007; Sun et al. 2009]. In these applications ten-
sor factorizations are used as exploratory analysis tools and do not address the link
prediction problem.
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7. CONCLUSIONS

In this article, we explore several matrix- and tensor-based approaches to solving the
link prediction problem. We consider author-conference relationships in bibliometric
data and a simulation indicative of user-service relationships in an online context as
example applications, but the methods presented here also have applications in other
domains such as predicting Internet traffic, flight reservations, and more. For the ma-
trix methods, our results indicate that using a temporal model to combine multiple
time slices into a single training matrix is superior to simple summation of all tem-
poral data. We also show how to extend Katz to bipartite graphs (e.g., for analyzing
relationships between two different types of nodes) and to efficiently compute an ap-
proximation to Katz based on the truncated SVD. However, none of the matrix-based
methods fully leverages and exposes the temporal signatures in the data. We present
an alternative: the CP tensor factorization. Temporal information can be incorporated
into the CP tensor-based link prediction analysis to gain a perspective not available
when using matrix-based approaches.

We have considered these methods in terms of their AUC scores and the number
of correct predictions in the top 1000 scores. In both cases, we can see that all the
methods do quite well on the DBLP dataset. Katz has the best AUC but is not compu-
tationally tractable for large-scale problems; however, the other methods are not far
behind. Moreover, TKatz-CWT and TSVD-CWT are best for predicting new links in
the DBLP data. Our numerical results also show that the tensor-based methods are
competitive with the matrix-based methods in terms of link prediction performance.

The advantage of tensor-based methods is that they can better capture and exploit
temporal patterns. This is illustrated in the user-service example. In this case, we
accurately predicted links several days out even though the underlying dynamics of
the process was much more complicated than in the DBLP case.

The current drawback of the tensor-based approach is that there is typically a higher
computational cost incurred, but the software for these methods is quite new and will
no doubt be improved in the near future.
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