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The vast amount of textual information available today is useless unless it can be effectively
and efficiently searched. The goal in information retrieval is to find documents that are
relevant to a given user query. We can represent a document collection by a matrix whose
(i, j) entry is nonzero only if the ith term appears in the jth document; thus each document
corresponds to a column vector. The query is also represented as a column vector whose ith
term is nonzero only if the ith term appears in the query. We score each document for
relevancy by taking its inner product with the query. The highest-scoring documents are
considered the most relevant. Unfortunately, this method does not necessarily retrieve all
relevant documents because it is based on literal term matching. Latent semantic indexing
(LSI) replaces the document matrix with an approximation generated by the truncated
singular-value decomposition (SVD). This method has been shown to overcome many difficul-
ties associated with literal term matching. In this article we propose replacing the SVD with
the semidiscrete decomposition (SDD). We will describe the SDD approximation, show how to
compute it, and compare the SDD-based LSI method to the SVD-based LSI method. We will
show that SDD-based LSI does as well as SVD-based LSI in terms of document retrieval while
requiring only one-twentieth the storage and one-half the time to compute each query. We will
also show how to update the SDD approximation when documents are added or deleted from
the document collection.
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1. INTRODUCTION

The vast amount of textual information available today is useless unless it
can be effectively and efficiently searched. The goal in information retrieval
is to match user information requests, or queries, with relevant information
items, or documents. Examples of information retrieval systems include
electronic library catalogs, the grep string-matching tool in Unix, and
search engines for the World Wide Web such as Alta Vista.

Oftentimes, users are searching for documents about a particular concept
that may not be accurately described by a list of keywords. For example, a
search on a term such as “Mark Twain” is likely to miss some documents
about “Samuel Clemens.” We might know that these are the same person,
but most information retrieval systems have no way of knowing. Latent
semantic indexing (LSI) overcomes this problem by automatically discover-
ing latent relationships in the document collection.

Before we discuss LSI further, we need to introduce the vector space
method: the document collection is represented by an m 3 n term-
document matrix where m is the number of terms and n is the number of
documents. Typically this matrix has fewer than 1% nonzero entries.
Queries are represented as m-vectors, and a matrix-vector product pro-
duces an n-vector of scores that is used to rank the documents in relevance.
This method is described in Section 2.

LSI is based on the vector space method, but the m 3 n term-document
matrix is replaced with a low-rank approximation generated by the trun-
cated singular-value decomposition (SVD). The truncated SVD approxima-
tion is the sum of k rank-1 outer products of m-vectors ui with n-vectors vi,
weighted by scalars si:

O
i51

k

s iuivi
T

Here, k is chosen to be much smaller than m and n. This approximation
produces the closest rank-k matrix to the term-document matrix in the
Frobenius measure [Golub and Van Loan 1989]. LSI has performed well on
both large and small document collections; see, for example, Dumais [1991;
1995]. LSI is described in Section 3.

Thus far, only the SVD and its relatives, the ULV and URV decomposi-
tions [Berry and Fierro 1996], have been used in LSI. We propose using a
very different decomposition, originally developed for image compression by
O’Leary and Peleg [1983]. In this decomposition, which we call the semidis-
crete decomposition (SDD), the matrix is approximated by a sum of rank-1
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outer products just as in the SVD, but the m-vectors and n-vectors are
restricted to only have entries in the set {21, 0, 1}. The decomposition is
constructed via a greedy algorithm and is not an optimal decomposition in
the sense of producing the best possible approximation in the Frobenius
and Euclidean norms; however, the SDD-based LSI method does as well as
the SVD-based method in terms of document retrieval while requiring less
than one-twentieth the storage and only one-half the query time. The
trade-off is that the SDD matrix approximation takes substantially longer
to compute; fortunately, this is only a one-time expense. The SDD-based
LSI method is described in Section 4, and computational comparisons with
the SVD-based method are given in Section 5.

In many information retrieval settings, the document collection is fre-
quently updated. Much work has been done on updating the SVD approxi-
mation to the term-document matrix [Berry et al. 1995; O’Brien 1994], but
it can be as expensive as computing the original SVD. Efficient algorithms
for updating the SDD approximation are given in Section 6.

A preliminary report on the idea was given in Kolda and O’Leary [1997].
Some of the material in this article is taken from Kolda [1997].

2. THE VECTOR SPACE METHOD

Both the SVD- and the SDD-based LSI methods are extensions of the vector
space method, which we describe in this section.

2.1 Creating the Term-Document Matrix

We begin with a collection of textual documents. We determine a list of
keywords or terms by

(1) creating a list of all words that appear in the documents,
(2) removing words void of semantic content such as “of” and “because”

(using the stop word list of Frakes [1992]), and
(3) further trimming the list by removing words that appear in only one

document.

The remaining words are the terms, which we number from 1 to m. Further
discussion of preprocessing techniques can be found in Kolda [1997].

We then create an m 3 n term-document matrix

A 5 @aij#,

where aij represents the weight of term i in document j. See Figure 1 for an
example of a 6 3 4 term-document matrix.

A natural choice of weights is to set aij 5 fij, the number of times that
term i appears in document j, but more elaborate weighting schemes often
yield better performance.

A term weight has three components: local, global, and normalization
[Salton and Buckley 1988]. We let

aij 5 giti j dj ,
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where tij is the local term component (based on information in the jth
document only), gi is the global component (based on information about the
use of the ith term throughout the collection), and dj is the normalization
component, specifying whether or not the columns (i.e., the documents) are
normalized. Various formulas for each component are given in Tables I–III.
In these formulas, x represents the signum function:

x~t! 5 H 1 if t . 0,
0 if t 5 0.

The weighting scheme is specified by a three-letter string whose letters
represent the local, global, and normalization components respectively; for
example, using weight lxn specifies that

aij 5
log~ fij 1 1!

ÎOk51
m ~log~ fkj 1 1!!2

,

that is, log local weights, no global weights, and column normalization.

2.2 Query Creation and Processing

A query is represented as an m-vector

q 5 @qi#,

where qi represents the weight of term i in the query. In order to rank the
documents, we compute

s 5 qT A,

and the jth entry of s represents the score of document j. The documents
can then be ranked according to their scores, highest to lowest, for
relevance to the query. In Figure 1, we show the result of performing a
query on “Mark Twain.” Notice that document 2 is not recognized as

Fig. 1. Vector space model.
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relevant even though it probably should be, since “Mark Twain” was a
pseudonym used by Samuel Clemens. This illustrates the problem with
literal term matching.

We must also specify a term weighting for the query. This need not be the
same as the weighting for the documents [Salton and Buckley 1988]. Here

qi 5 gi t̂ i ,

where gi is computed based on the frequencies of terms in the document
collection, and t̂ i is computed using the same formulas as for tij given in
Table I with fij replaced by f̂ i, the frequency of term i in the query.
Normalizing the query vector has no effect on the document rankings, so
we never do it. This means the last component of the three-letter query-
weighting string is always x. So, for example, the weighting cfx means

qi 5 S0.5x~ f̂ i! 1 0.5S f̂ i

maxkf̂k

D D logS n

O j51
n fij

D .

Table I. Local Term Weights

Symbol Formula for tij Description Reference

b x(fij) Binary [Salton and Buckley 1988]
t fij Term Frequency [Salton and Buckley 1988]

c 0.5Sx~fij! 1
fij

maxk fkj
D Augmented Normalized

Term Frequency
[Harman 1992; Salton and

Buckley 1988]

l log(fij 1 1) Log [Harmon 1992]

Table II. Global Term Weights

Symbol Formula for gi Description Reference

x 1 No change [Salton and Buckley 1988]

f logS n

(jx~fij!
D Inverse Document

Frequency (IDF)
[Salton and Buckley 1988]

p logSn 2 (jx~fij!

(jx~fij!
D Probabilistic Inverse [Harman 1992; Salton and

Buckley 1988]

Table III. Document Length Normalization

Symbol Formula for dj Description Reference

x 1 No Change [Salton and Buckley 1988]
n ~(i51

m ~gitij!
2!21/2 Normal [Salton and Buckley 1988]
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A six-letter string, e.g., lxn.cfx, specifies the document and query weights.
We will use various weightings in our LSI experiments. The choice of these
weightings is a result of more extensive studies presented in Kolda [1997].

3. LSI VIA THE SVD

3.1 Approximating the Term-Document Matrix

In LSI, we use an approximation of the term-document matrix, as gener-
ated by the truncated SVD. The SVD decomposes A into a set of r 5
rank( A) triplets of left (ui) and right (vi) singular vectors and scalar
singular values (si):

A 5 O
i51

r

s iuivi
T

The ui vectors and vi vectors each form orthonormal sets, and the positive
scalars s i are ordered from greatest to least. The SVD is more commonly
seen in matrix notation as

A 5 U S VT

where the columns of U are the left singular vectors, the columns of V are
the right singular vectors, and ( is a diagonal matrix containing the
singular values.

The truncated SVD can be used to build a rank-k approximation to A by
only using the first k ,, r triplets, i.e.,

A < Ak ; O
i51

k

s iuivi
T .

In matrix form this is written as

A < Ak ; Uk S kVk
T ,

where Uk and Vk consist of the first k columns of U and V respectively, and
(k is the leading k 3 k principal submatrix of (. It can be shown that Ak is
the best rank-k approximation to A in the Frobenius norm and in the
Euclidean norm [Golub and Van Loan 1989]. Each of the n columns of the
matrix Ak is a linear combination of the k columns of Uk, and thus we have
an implicit clustering of documents based on these principal components.

Since the SVD approximation is close to the original matrix, document
retrieval based on its use can be expected to be almost as good as document
retrieval based on the original matrix. But, in fact, the situation is much
better than this. The approximation matrix is a “noisy” version of the
original matrix, where the noise was added to reduce the rank (i.e., make
the documents appear more similar) while remaining close to the original
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data. Suppose that “Clemens” and “Twain” often appear together in the
document collection. If we then have one document that only mentions
“Twain,” the approximation may add some noise to the “Clemens” entry as
a result of compressing the rank. The amount of noise depends on the size
of k. For very small values of k, there is a lot of noise—usually too
much—and as k grows, the noise gets smaller until it completely disap-
pears. At some intermediate value of k, we have the optimal amount of
noise for recognizing the latent relationship between “Clemens” and
“Twain.”

Figure 2 shows the result of using a rank-2 truncated SVD to approxi-
mate the term-document matrix given in Figure 1.

3.2 Query Processing

We can process queries using our approximation for A:

s 5 qTA < qTAk

5 qTUkSkVk
T

5 ~qTUkSk
a!~Sk

1 2 aVk
T!

; q̃TÃ

The scalar a controls the splitting of the (k matrix and has no effect unless
we renormalize the columns of Ã, after computing the decomposition, we
rescale each column of ((k

12aVk
T) so that it has Euclidean norm one. We will

experiment with various choices for a and renormalization in Section 5.2.
In the example in Figure 2, we do not use renormalization. Observe that

document 2 is now recognized as relevant because “noise” has been added
to the “Mark” and “Twain” entries in column 2.

The SVD has been used quite effectively for information retrieval, as
documented in numerous reports. We recommend the original LSI paper
[Deerwester et al. 1990], a paper reporting the effectiveness of the LSI
approach on the TREC-3 dataset [Dumais 1991], and a more mathematical
paper by Berry et al. [1995].

Fig. 2. LSI via the SVD.
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4. LSI VIA A SEMIDISCRETE DECOMPOSITION

4.1 Approximating the Term-Document Matrix

The truncated SVD produces the best rank-k approximation to a matrix,
but generally even a very low-rank-truncated SVD approximation requires
more storage than the original matrix if the original matrix is sparse. To
save storage (and query time), we propose replacing the truncated SVD by
the semidiscrete decomposition (SDD):

Ak 5 O
i51

k

di xi yi
T ,

where each m-vector xi and each n-vector yi are constrained to have entries
from the set 6 5 {21, 0, 1}, and the scalar di is any positive number. We
can also express this in matrix notation as

Ak 5 Xk DkYk
T ,

where Xk 5 { x1
. . . xk}, Yk 5 { y1

. . . yk}, and Dk 5 diag {d1, . . . , dk}.
This decomposition was originally introduced in O’Leary and Peleg [1983].
The SDD does not reproduce A exactly, even if k 5 n, but it uses very little
storage with respect to the observed accuracy of the approximation. A
rank-k1 SDD requires the storage of k(m 1 n) values from the set {21, 0,
1} and k scalars. An element of the set {21, 0, 1} can be expressed using
log2 3 bits, although we use two bits per element for simplicity. The scalars
need to be only single precision because the algorithm is self-correcting.
The SVD, on the other hand, has been computed in double-precision accuracy
for numerical stability [Paige 1974; Wilkinson 1965] and to keep open the
possibility of updating the decomposition if documents are added or deleted
from the collection [Berry et al. 1995; O’Brien 1994]. Assuming that double-
precision scalars require eight bytes and single-precision scalars require four,
and packing eight bits in a byte, we obtain a storage comparison (Table IV)

1Although the approximation may not be rank-k algebraically, it is the sum of k rank-1
matrices.

Table IV. Storage Comparison between Rank-k SVD and SDD Approximations
to an m 3 n Matrix

Method Component Total Bytes

U km double-precision numbers
SVD V kn double-precision numbers 8k(m 1 n 1 1)

( k double-precision numbers

X km numbers from {21, 0, 1}
SDD Y kn numbers from {21, 0, 1} 4k 1 1⁄4k(m 1n)

D k single-precision numbers
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between rank-k SVD and SDD approximations to an m 3 n matrix. For equal
values of k, the SVD requires nearly 32 times more storage than the SDD.
However, we shall see that the SDD rank should be about 50% larger than the
SVD rank and results in a 95% reduction in storage.

The SDD approximation is formed iteratively. The remainder of this section
comes from O’Leary and Peleg [1983], but is presented here in a slightly
different form. Let A0 5 0, and let Rk be the residual matrix at the kth step,
that is, Rk 5 A 2 Ak21. We wish to find a triplet (dk, xk, yk) that solves

min
x[6m

y[6n

d.0

Fk~d, x, y! ; iRk 2 dxyTiF
2 . (1)

This is a mixed integer programming problem.
We can formulate this as an integer programming problem by eliminat-

ing d. For convenience, we temporarily drop the subscript k. We have

F~d, x, y! 5 O
i51

m O
j51

n

~rij 2 dxi yj!
2 5 iRiF

2 2 2dxTRy 1 d2i xi2
2i yi2

2 .

At the optimal solution,

F/d 5 22xTRy 1 2di xi2
2i yi2

2 5 0,

so the optimal value, d*, of d is given by

d* 5
xTRy

i xi2
2i yi2

2 .

Plugging d* into F, we get

F~d*, x, y! 5 iRiF
2 2 2S xTRy

i xi2
2i yi2

2D xTRy 1 S xTRy

i xi2
2i yi2

2D 2

i xi2
2i yi2

2

5 iRiF
2 2

~ xTRy!2

i xi2
2i yi2

2 . (2)

Thus (1) is equivalent to

max
x[6m

y[6n

F̃~ x, y! ;
~ xTRy!2

i xi2
2i yi2

2 , (3)

which is an integer programming problem with 3(m1n) feasible points.
When both m and n are small, we enumerate the feasible points and

compute each function value to determine the maximizer. However, as the
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size of m and/or n grows, the cost of this approach grows exponentially.
Rather than trying to solve the problem exactly, we use an alternating
algorithm to generate an approximate solution. We begin by fixing y and
solving (3) for x; we then fix that x and solve (3) for y; we then fix that y
and solve (3) for x, and so on.

Solving (3) is very easy when either x or y is fixed. Suppose that y is
fixed. Then we must solve

max
x[6m

~ xTs!2

i xi2
2 , (4)

where s 5 Ry/i yi2 is fixed. Sort the elements of s so that

usi1u $ usi2u $ · · · $ usimu.

If we knew x had exactly J nonzeros, then it is clear that the solution to (4)
would be given by

xij 5 H sign~sij! if 1 # j # J,
0 if J 1 1 # j # m .

Therefore, there are only m possible x-vectors we need to check to deter-
mine the optimal solution for (4).

Hence, the O’Leary-Peleg algorithm to find the SDD approximation of
rank kmax to an m 3 n matrix A is given by

(1) Let R1 5 A.
(2) Outer Iteration (k 5 1, 2, . . . , kmax):

(a) Choose a starting vector y such that Rky Þ 0.
(b) Inner Iteration (i 5 1, 2, . . . , imax):

i. Fix y and let x solve max
x[6m

~xTRky!2

i xi2
2.

ii. Fix x and let y solve max
y[6n

~yTRk
Tx!2

i yi2
2.

(c) End Inner Iteration.

(d) Let xk 5 x, yk 5 y, dk 5
xk

TRkyk

i xki2
2i yki2

2 .

(e) Let Rk11 5 Rk 2 dkxk yk
T.

(3) End Outer Iteration.

We specify a set number of iterations for the inner loop, but we may use a
heuristic stopping criterion instead. From (2) note that

iRk11iF
2 5 iRk 2 dk xk yk

TiF
2 5 iRkiF

2 2
~ xk

TRk yk!
2

i xki2
2i yki2

2 . (5)

A Semidiscrete Matrix Decomposition • 331

ACM Transactions on Information Systems, Vol. 16, No. 4, October 1998.



So for a given ( x, y) pair, we can compute exactly what the F-norm of Rk11

will be if we accept them. The method proposed in O’Leary and Peleg [1983]
to determine when to stop the inner iterations is the following: at the
beginning of the inner iterations, set change 5 1. Then at the end of each
inner iteration, compute

newchange 5
~ xTRky!2

i xi2
2i yi2

2 , and

improvement 5
unewchange 2 changeu

change
,

change 5 newchange.

Once improvement falls below a given level, say 0.01, we terminate the
inner iterations. In other words, we iterate until the improvement in the
residual has stagnated. This is the method we use in our tests, and
experimentally we found that 0.01 was a good tolerance. As a starting
vector for the inner iteration, we use a vector in which every 100th element
is one and all the others are zero. It can be shown that, under mild
assumptions on the starting guess, we are ensured that Ak 3 A as k 3 `;
see Kolda [1997] for this and other convergence results. Experiments using
a singular vector as a starting guess, or starting guesses with guaranteed
convergence, did not produce improvement over this simple-minded initial-
ization.

Assuming that we do a fixed number of inner iterations per step, the
complexity of the algorithm is O(k2(m 1 n) 1 m log m 1 n log n). In
practice, we found that the number of inner iterations to reach the
convergence tolerance averaged near 10.

In Figure 3 we show the result of approximating the term document
matrix in Figure 1 with a rank-2 SDD approximation. As in the SVD, noise
has been added to the “Mark” and “Twain” entries for document 2,
revealing the latent relationship.

Fig. 3. LSI via the SDD.
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4.2 Query Processing

We evaluate queries in much the same way as we did for the SVD, by
computing s 5 q̃T Ã, with

Ã 5 Dk
12aYk

T , q̃ 5 Dk
a X k

Tq.

Again, we generally renormalize the columns of Ã.
In Figure 3, the second document is now recognized as relevant, as it was

when using the SVD-based LSI.
For decompositions of equal rank, the SDD-based method requires signif-

icantly fewer floating-point operations than the SVD-based method to
process the query, as shown in Table V. If we renormalize the columns of Ã
then each method requires n additional multiplies and storage of n addi-
tional floating-point numbers.

5. COMPUTATIONAL COMPARISON OF SDD- AND SVD-BASED LSI

In this section, we present computational results comparing the SDD- and
SVD-based LSI methods. All tests were run on a Sparc 20. Our code is in C,
with the SVD taken from subroutine las2 in SVDPACKC [Berry et al.
1993].

5.1 Methods of Comparison

We will compare the SDD- and SVD-based LSI methods using three
standard test sets; see Table VI. Each test set comes with a collection of
documents, a collection of queries, and the “correct answers,” that is, a list
of relevant documents.

We will compare the systems by looking at average precision, a standard
measure used by the information retrieval community [Harman 1995,
Appendix A]. When we evaluate a query, we receive an ordered list of
documents. Let ri denote the number of relevant documents up to and
including position i in the ordered list. For each document, we compute two
values: recall and precision. The recall at the ith document is the propor-
tion of relevant documents returned so far, that is,

ri

rn

.

(Note that rn is the total number of relevant documents.) The precision at
the ith document, pi, is the proportion of documents returned so far that

Table V. Comparison of Number of Floating-Point Operations for the SDD- and SVD-Based
Methods, for Decompositions of Equal Rank

Operation SDD SVD

Additions k(m 1 n) k(m 1 n)
Multiplications k k(1 1 m 1 n)
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are relevant, that is,

pi 5
ri

i
.

The pseudoprecision at recall level x [ [0, 1], p̃( x), is defined as

p̃~ x! 5 max$ pi u ri $ ~ x z rn!, i 5 1, . . . , n%.

The N-point (interpolated) average precision for a single query is defined as

1

N
O
i50

N21

p̃S i

N 2 1D .

We use 11-point average precision. Since we have multiple queries, we will
consider the mean and median average precision over all queries in each
data set.

5.2 Parameter Choices

We have two parameter choices to make for the SDD- and SVD-based LSI
methods: the choice of the splitting parameter a and the choice of whether
or not to renormalize the columns of Ã.

We investigated these two choices with the SVD- and SDD-based meth-
ods on the MEDLINE data set using the weighting lxn.bpx. The results are
summarized in Table VII. In all further tests, we will use a 5 0.5 with
renormalization for the SDD-based method and a 5 0 with renormalization
for the SVD-based method. We experimented using other weightings and
other data sets and confirmed that these parameter choices are always best
or very close to it.

5.3 Comparisons

We tested the SDD- and SVD-based LSI methods and the vector space
method of Section 2 with a number of weightings. We selected these

Table VI. Characteristics of the Test Sets

MEDLINE CRANFIELD CISI

Number of Documents: 1033 1399 1460
Number of Queries: 30 225 35
Number of (Indexing) Terms: 5526 4598 5574
Avg No of Terms/Document: 48 57 46
Avg No of Documents/Term: 9 17 12
% Nonzero Entries in Matrix: 0.87 1.24 0.82
Storage for Matrix (MB): 0.4 0.6 0.5
Avg No of Terms/Query: 10 9 7
Avg No Relevant/Query: 23 8 50

334 • T. G. Kolda and D. P. O’Leary

ACM Transactions on Information Systems, Vol. 16, No. 4, October 1998.



particular weightings because they performed well for the vector space
method [Kolda 1997]. Note that we choose not to use a global weight on the
term-document matrix; our studies have shown that global weightings on
the term-document matrix have no positive effect on performance. We do
use global weightings on the query. This can be thought of as applying the
global weighting after doing the decomposition. We present mean average
precision results in Table VIII using a rank k 5 100 approximation in each
method; this table also includes vector space method results for compari-
son.

To continue our comparisons, we select a “best” weighting for each data
set. In Table VIII we have highlighted the “best” results for each data set in
boldface type. We will use only these weightings for the remainder of the
article.

In Figure 4, we present results for the MEDLINE data. The upper right
graph plots the mean average precision versus query time for approxima-
tions of increasing rank. For example, the leftmost asterisk corresponds to
the rank-10 SDD; the next asterisk corresponds to the rank-20 SDD; and so
on. The SVD results are presented in the same manner using circles. The
vertical dotted line shows the query time for the vector space method, and
the horizontal dotted line shows the mean average precision for the vector
space method. Note that each LSI method reaches a mean average preci-
sion peak and then declines, asymptotically approaching the performance
of the vector space method; the peak corresponds to when we have added
just the right amount of “noise.” The SDD-based method peaks at a mean
average precision of 63.6, corresponding to a query time of 3.4 seconds
using a rank-140 approximation. To be that fast in terms of query time, the
SVD-based method can only use a rank-20 approximation that achieves a
mean average precision of 51.8. At its peak mean average precision of 65.5,
the SVD-based method has a query time of 6.3 seconds using a rank-110
approximation. Note that both methods require more time for the query
than the vector space method, but this is the trade-off for increased
performance in terms of average precision. The upper-right graph is the
same, except that only this time we are using median average precision
rather than mean average precision.

Table VII. Mean Average Precision for the SDD- and SVD-Based Methods with Different
Parameter Choices on the MEDLINE Data Set with k 5 100 and Weighting lxn.bpx

SDD SVD

Renormalize? Renormalize?

a Yes No Yes No
0 62.1 61.2 65.1 64.2
0.5 62.6 61.2 64.7 64.2

20.5 57.9 61.2 64.7 64.2
1.0 61.7 61.2 64.2 64.2

21.0 48.6 61.2 62.3 64.2
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The middle left graph in Figure 4 plots mean average precision against
storage for the decomposition. Again, the leftmost asterisk corresponds to
the rank-10 SDD; the next asterisk to the right corresponds to the rank-20

Table VIII. Mean Average Precision Results for the SDD-Based LSI, SVD-Based LSI, and
the Vector Space (VS) Methods with k 5 100

Weight

MEDLINE CRANFIELD CISI

SDD SVD VS SDD SVD VS SDD SVD VS

lxn.bfx 62.6 64.6 54.6 35.7 40.4 45.5 15.6 16.6 17.8
lxn.bpx 62.6 65.1 54.6 35.6 39.9 45.5 15.2 16.9 17.9
lxn.lfx 61.2 64.0 53.7 35.8 40.3 45.6 16.0 16.6 18.3
lxn.lpx 61.3 64.3 53.8 35.5 40.1 45.7 15.5 16.9 18.4
lxn.txp 60.9 63.5 53.2 35.7 40.2 45.6 16.3 16.9 18.4
lxn.tpx 60.9 63.8 53.4 35.4 39.9 45.6 15.7 17.0 18.4
cxx.bpx 57.9 59.6 51.9 32.9 38.9 43.4 17.1 17.9 17.6
cxn.bfx 58.4 62.5 53.6 33.1 38.7 44.1 17.8 16.5 17.5
cxn.bpx 58.4 63.0 53.6 32.6 38.7 43.4 18.1 17.6 17.5
cxn.tfx 56.8 61.5 52.5 33.3 38.8 43.9 17.1 16.9 18.3
cxn.tpx 57.0 61.8 52.5 32.7 38.2 43.3 17.1 17.7 18.3

Fig. 4. A comparison of the SDD- (*) and SVD-based (o) LSI method on the MEDLINE data
set. We plot 60 points for each graph, corresponding to k 5 10, 20, . . . , 600. The dotted lines
show the corresponding data for the vector space method.
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SDD, and so on. The SVD method is plotted in the same manner using
circles. Observe that there are only three data points for the SVD; this is
because the remaining points are past the edge of the graph.2 The horizon-
tal dotted line shows the mean average precision for the vector space
method, and the vertical dotted line shows how much space is required to
store the original term-document matrix. Observe that at its mean average
precision peak, the SDD-based method needs only 0.2MB of storage, only
half that required by the original matrix (0.4MB). Conversely, the SVD-
based method requires over 5MB of storage at its mean average precision
peak. The middle right graph is the same as the graph on the left except

2Storage space can be economized for the SVD by using lower precision in Uk and Vk. For
instance, if eight-bit fixed-point precision is used, the mean average precision is 64.5 rather
than the 65.5 of double precision. Beyond this point, however, the mean average precision
drops rapidly: 60.2, 32.3, and 6.5 for six-, four-, and two-bit precision, respectively. Even if low
precision is used in retrieval, a higher-precision version would need to be preserved if future
updates to the document collection are expected.

Fig. 5. A comparison of the SDD- (*) and SVD-based (o) LSI methods on the CRANFIELD
data set. We plot 40 data points for each graph, corresponding to k 5 10, 20, . . . , 400. The
dotted lines show the corresponding data for the vector space method.
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that we are using median average precision rather than mean average
precision.

The bottom left graph in Figure 4 plots decomposition size against the
rank of the matrix. Note that the y-axis is logarithmic. The asterisks and
circles are defined as before, and the vertical dotted line indicates how
much storage the original matrix required.

The bottom right graph in Figure 4 plots the norm of the relative residual
(iRkiF/iR0iF) against storage. Note that the x-axis is logarithmic. The
asterisks and circles are defined as before, and the horizontal dotted line
indicates how much room the original matrix required. The primary
observation we make from this graph is that if we are given SDD and SVD
approximations of equal storage size, the SDD approximation will have a
lower residual.

Figure 5 shows the same series of graphs for the CRANFIELD data set.
This data set is troublesome for LSI techniques; they do not do as well as
the vector space method. From the upper two graphs in Figure 5 we see
that, for equal query times, the SDD method does as well as the SVD-based
method in terms of average precision. In terms of storage, we again see the

Fig. 6. A comparison of the SDD- (*) and SVD-based (o) LSI methods on the CISI data set.
We plot 49 data points for each graph, corresponding to k 5 10, 20, . . . , 490. The dotted
lines show the corresponding data for the vector space method.
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SDD-based method is much more economical than the SVD-based method.
The bottom two graphs look nearly identical to those in Figure 4.

Lastly, Figure 6 shows the same series of graphs on the CISI data set.
Here the SDD-based method peaks slightly higher than the SVD-based
method as shown in the two upper graphs. The SDD-based method peaks at
a mean average precision of 19.1 at 4.3 seconds using a rank-140 SDD. If
we restrict the SVD-based method to only 4.3 seconds of query time, it can
only use a rank-30 SVD, which achieves a mean average precision of 15.2.
At its peak, the SVD-based method reached a mean average precision of
18.3 using a rank-90 SVD. In terms of storage, at its peak the SDD uses
less than half the storage (0.2MB) of the original matrix (0.5MB). This
means that we get compression as well as an increase in performance. The
bottom two graphs again look nearly identical to those in Figure 4.

Table IX compares the two methods at their respective mean average
precision peaks. The first row lists the average time to complete a single
query. The SDD-based method is approximately twice as fast as the
SVD-based method. The second row lists the rank of the approximation.
Although the SDD method saves much less data per vector, it requires only
about 50% more vectors than the SVD. The third and fourth rows list the
mean and median average precisions respectively. We claim that the
methods are basically equal in terms of these measures. To give a more
concrete idea of what a user might expect, the fifth row lists the average
number of relevant documents returned in the top ten. Again the two
methods are nearly equal with respect to this measure. The sixth row
compares the storage requirements of the two methods. The SVD approxi-
mation requires over 20 times more storage than the SDD approximation.
The seventh row shows that it takes about five times longer to compute the
SDD than the SVD; however, this is only a one-time expense. The last row
gives the norm of the relative residual. Note that for both MEDLINE and
CISI, this value is around 0.80. In the CRANFIELD data, neither method
really peaks. The relative residual may give us a clue in determining how
good our approximation should be, that is, what value of k we should
choose. Since we know the norm of the residual as a by-product of the
approximation, we can easily track the stopping criterion.

Table IX. Comparison of the SDD- and SVD-Based Methods at Their Respective Peaks

MEDLINE CRANFIELD CISI

SDD SVD SDD SVD SDD SVD

Avg Qry Time (Sec) 0.11 0.21 0.28 0.65 0.12 0.18
Dimension (k) 140 110 390 400 140 90
Mean Avg Prec 63.6 65.5 44.9 47.0 19.1 18.3
Median Avg Prec 70.4 71.0 37.3 40.9 19.4 18.5
Avg in Top Ten 7.17 7.43 2.65 2.67 2.51 2.49
Storage (MB) 0.2 5.8 0.6 19.2 0.2 5.1
Decomp Time (Sec) 245 54 1314 641 279 54
Rel Resid Norm 0.85 0.78 0.63 0.45 0.85 0.81
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To summarize, SDD-based LSI retrieves documents as well as SVD-based
LSI, requires only about half the query time, and requires less than
one-twentieth the storage. The only disadvantage of the SDD-based method
is that computing the SDD approximation takes five times as long as
computing the SVD approximation. The SVD is rather difficult to update
when the document collection changes, but in the next section we discuss
how easy it is to update the SDD and, in the process, develop a more
economical way to compute the initial SDD.

6. MODIFYING THE SDD WHEN THE DOCUMENT COLLECTION
CHANGES

Thus far we have discussed the usefulness of the SDD on a fixed document
collection. In practice, it is common for the document collection to be
dynamic: new documents are added, and old documents are removed. In
this section, we will focus on the problem of modifying a SDD decomposi-
tion when the document collection changes.

SVD updating has been studied by O’Brien [1994] and Berry et al. [1995].
The authors report that updating the SVD takes almost as much time as
recomputing it, but that it requires less memory. The authors’ methods are
similar to what we do in Method 1 in the next section.

6.1 Adding or Deleting Documents

Suppose that we have an SDD approximation for a document collection and
then wish to add more documents. Rather than compute a new approxima-
tion, we will use the approximation from the original document collection to
generate a new approximation for the enlarged collection.

Let m1 and n1 be the number of terms and documents in the original
collection, n2 the number of documents added, and m2 the number of new
terms.3 Let the new document collection be represented as

A 5 F A11 A12

A21 A22
G ,

where

—A11 is an m1 3 n1 matrix representing the original document collection,
—A12 in an m1 3 n2 matrix representing the new documents indexed by

the m1 terms used in the original collection,
—A21 is an m2 3 n1 matrix representing the original documents indexed

by the newly introduced terms, and
—A22 is an m2 3 n2 matrix representing the new documents indexed by

the newly introduced terms.

3Recall that a term is any word that appears at least twice in the collection and is not a stop
word. The addition of new documents may add new terms, some of which may have appeared
once in the original document collection.
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Recall that we are not using global weighting on the term-document
matrix, so A11 will not change. We will discuss in the next subsection what
to do if there are global weights.

Assume that X(1), D(1), and Y(1) are the components of the SDD approx-
imation for A11. We propose two methods for updating this decomposition.
Each method is a two-step process. In the first step, we incorporate the new
documents using the existing terms, and in the second step, we incorporate
the new terms (for both old and new documents).

Method 1: Append Rows to Y (1) and X(1). The simplest update method is
to keep the existing decomposition fixed and just append new rows corre-
sponding to the new terms and documents. The D will not be recomputed,
so the final D is given by

D 5 D ~1!.

To incorporate the documents (the first step), we want to find Y(2) [
6n23k such that

@A11 A12# < X ~1!DFY ~1!

Y ~2!G T

.

Let kmax be the rank of the decomposition desired; generally this is
the same as the rank of the original decomposition. For each value of
k 5 1, . . . , kmax, we must find the vector y that solves

min
y[6n2

iA ~c! 2 dxyTiF ,

where A(c) 5 A12 2 Xk21
(1) Dk21(Yk21

(2) )T, x is the kth column of X (1), and d
is the kth diagonal element of D. We never access A11, and this may be
useful in some situations. The solution y becomes the kth column of Y(2).
The final Y is given by

Y 5 FY ~1!

Y ~2!G .

To incorporate the terms, we want to find X (2) [ 6m23k such that

A 5 F A11 A12

A21 A22
G < FX ~1!

X ~2!GDYT.

We find X(2) in an analogous way to finding Y (2). For each k 5 1, . . . ,
kmax, we must find the vector x that solves

min
x[6m2

iA ~c! 2 dxyTiF ,

A Semidiscrete Matrix Decomposition • 341

ACM Transactions on Information Systems, Vol. 16, No. 4, October 1998.



where A(c) 5 [A21 A22] 2 Xk21
(2) Dk21(Yk21)T, y is the kth column of Y, and

d is the kth diagonal element of D. Again, we never access A11 for this
computation. The final X is given by

X 5 FX ~1!

X ~2!G .

Method 2: Recompute Y and D, Then X and D. Another possible
method is to completely recompute Y and D (holding X fixed) to incorporate
the documents, and then recompute X and D, holding Y fixed.

Specifically, to incorporate the documents, we first want to find D (2) and
Y such that

@A11 A12# < X ~1!D ~2!Y,

where Y has no superscript because it will be the final Y.
To do this, let kmax be the rank of the decomposition desired. For each

k 5 1, . . . , kmax, we must find the d and y that solve

min
d.0
y[6n

iA ~c! 2 dxyTiF ,

where A (c) 5 A 2 Xk21
(1) Dk21

(2) Yk21
T and x is the kth column of X(1). The

solutions d and y become the kth diagonal element of D (2) and the kth
column of Y respectively.

To incorporate the documents, we wish to find X and D such that

A 5 F A11 A12

A21 A22
G < XDYT.

This is similar to how we computed Y and D (2) in the first step. For each
k 5 1, . . . , kmax, we must find the d and x that solve

min
d.0

x[6m

iA ~c! 2 dxyTiF ,

where A (c) 5 A 2 Xk21Dk21Yk21
T and y is the kth column of Y. The

solutions d and x become the kth diagonal element of D and the kth column
of X respectively.

Neither method has any inner iterations, so both are fast. We tried each
update method on a collection of tests derived from the MEDLINE data. We
split the MEDLINE document collection into two groups. We did a decom-
position on the first group of documents with k 5 100, then added the
second group of documents to the collection, and updated the decomposition
via each of the two update methods. The results are summarized in Table
X. The second method has better average precision, as should be expected,
since we are allowing more to change. For the second method, the decrease
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in mean average precision is not very great when we add only a small
number of documents. As the proportion of new documents to old docu-
ments grows, however, performance worsens to the point that it is worse
than the vector space method. Note, however, that great savings in compu-
tation time can be achieved by adding documents incrementally rather
than performing the SDD on a large document collection.

If we wish to delete terms or documents, we simply delete the corre-
sponding rows in the X and Y matrices. For the SVD, this operation is
much more complicated, since orthogonality must be restored.

6.2 Iterative Improvement of the Decomposition

If we have an existing decomposition, perhaps resulting from adding and/or
deleting documents and terms, we may wish to improve on this decomposi-
tion without recomputing it. We consider two approaches:

Improvement 1: Partial Recomputation. In order to improve on the
decomposition, we could reduce its rank by deleting, say, 10% of the vectors
and then recompute them using our original algorithm. This method’s main
disadvantage is that it can be expensive in time. If performed on the
original decomposition, it has no effect.

Improvement 2: Fix and Compute. This method is derived from the
second update method. We fix the current X and recompute the Y and D;
we then fix the current Y and recompute the X and D. This method is very
fast because there are no inner iterations. This can be repeated to further
improve the results. If applied to an original decomposition, it would
change it.

We took the decompositions resulting from the second update method in
the last subsection and applied the improvement methods to them. We have
a rank-100 decomposition. For the first improvement method, we recom-
puted 10 dimensions. For the second improvement method, we applied the
method once. The results are summarized in Table XI. If we have added

Table X. Comparison of Two Update Methods on the MEDLINE Data Set with k 5 100

Decomp
Time (Sec)

Method 1 Method 2

Documents
Time
(Sec)

Mean
Avg Prec

Time
(Sec)

Mean
Avg PrecOld New

1033 — 150.5 — 62.18 — 62.18
929 104 138.3 10.5 60.10 13.8 61.83
826 207 122.1 10.4 58.44 13.7 61.80
723 310 103.6 10.2 54.59 13.4 62.46
619 414 94.2 10.2 47.70 13.2 59.28
516 517 77.5 10.1 39.11 12.9 58.76
413 620 60.7 9.9 34.00 12.6 58.83
309 724 45.6 9.5 18.98 12.1 57.19
206 827 26.2 9.6 18.50 11.7 52.29
103 930 14.9 9.4 16.26 11.1 51.38
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only a few documents, neither method is very helpful. On the other hand, if
we have added many documents, then the second method is much better.
The first method could be improved by recomputing more dimensions, but
this would quickly become too expensive. The second method greatly
improves poor decompositions and is relatively inexpensive. It can be
applied repeatedly to further improve the decomposition.

If we choose to use global weighting on the term-document matrix and
the global weights change as a result of adding new documents, we suggest
the following procedure. First use improvement steps to improve the SDD
decomposition of A11 with the new global weights, and then proceed with
the update procedure as normal.

7. CONCLUSIONS

We have introduced a semidiscrete matrix decomposition for use in LSI.
For equal query times, the SDD-based LSI method performs as well as the
original SVD-based LSI method. The advantages of the SDD-based method
are that the decomposition takes very little storage, and the queries are
faster; the disadvantage is that the time to form the decomposition is large.
Since decomposition is a one-time expense, we believe that the SDD-based
LSI method will be quite useful in application.

We have also introduced methods to dynamically update the SDD decom-
position if the document collection changes, as well as methods to improve
the decomposition if it is found to be inadequate. Updating the SDD is
much easier than updating the SVD. Using these updating techniques, the
initial decomposition time for the SDD can be greatly reduced without
much reduction in average precision.

Open questions remain: in particular, how the algorithm would behave
on more extensive document collections, whether a large number of incre-
mental updates to the document collection can be tolerated, and how the
algorithm compares to other approaches, such as the INQUERY retrieval

Table XI. Comparison of Two Improvement Methods on the MEDLINE Data Set
with k 5 100

Prev Mean
Avg Prec

Improvement 1 Improvement 2

Documents
Time
(Sec) Mean

Time
(Sec)

Mean
Avg PrecOld New

1033 — 62.16 22.9 62.16 13.5 61.85
929 104 61.83 20.8 61.45 13.4 61.22
826 207 61.80 19.8 61.51 13.5 62.03
723 310 62.46 21.6 61.91 13.4 61.89
619 414 59.28 19.6 58.70 13.6 61.42
516 517 58.76 19.2 59.43 13.5 59.32
413 620 58.83 20.2 59.68 13.4 61.55
309 724 57.19 20.1 57.94 13.6 59.59
206 827 52.29 21.2 54.35 13.4 57.63
103 930 51.38 22.7 53.88 13.4 56.46
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system [Broglio et al. 1995], random sampling matrix multiplication algo-
rithms [Cohen and Lewis 1997], and conventional inverted file-based
retrieval [Witten et al. 1994].
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