
An Overview of the Trilinos Project

MICHAEL A. HEROUX, ANDREW G. SALINGER,
ROSCOE A. BARTLETT, HEIDI K. THORNQUIST,
VICKI E. HOWLE, RAY S. TUMINARO,
ROBERT J. HOEKSTRA, JAMES M. WILLENBRING,
JONATHAN J. HU, and ALAN WILLIAMS
TAMARA G. KOLDA,
RICHARD B. LEHOUCQ,
KEVIN R. LONG,

Sandia National Laboratories

ROGER P. PAWLOWSKI,

and

ERIC T. PHIPPS,

KENDALL S. STANLEY
Oberlin College

The Trilinos Project is an effort to facilitate the design, development, integration, and ongoing
support of mathematical software libraries within an object-oriented framework for the solution of
large-scale, complex multiphysics engineering and scientific problems. Trilinos addresses two fun-
damental issues of developing software for these problems: (i) providing a streamlined process and
set of tools for development of new algorithmic implementations and (ii) promoting interoperability
of independently developed software.

Trilinos uses a two-level software structure designed around collections of packages. A Trilinos
package is an integral unit usually developed by a small team of experts in a particular algorithms
area such as algebraic preconditioners, nonlinear solvers, etc. Packages exist underneath the Trili-
nos top level, which provides a common look-and-feel, including configuration, documentation,
licensing, and bug-tracking.

Here we present the overall Trilinos design, describing our use of abstract interfaces and default
concrete implementations. We discuss the services that Trilinos provides to a prospective package

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy under Contract DE-AC04-94AL85000.
Authors’ addresses: M. A. Heroux, R. A. Bartlett, R. J. Hoekstra, R. B. Lehoucq, R. P. Pawlowski,
E. T. Phipps, A. G. Salinger, H. K. Thornquist, J. M. Willenbring, A. Williams, Sandia Na-
tional Laboratories, New Mexico, P.O. Box 5800, Albuquerque, NM 87185; email: {maherou,
rabartl,rjhoeks,rblehou,rppawlo,etphipp,agsalin, hkthorn,jmwille,william}@sandia.gov; V. E.
Howle, J. J. Hu, T. G. Kolda, K. R. Long, R. S. Tuminaro, Sandia National Laboratories,
California, P.O. Box 969, Livermore, CA 94551; email: {vehowle,jhu,tgkolda,krlong,rstumin}@
sandia.gov; K. S. Stanley, Oberlin College, 322 W. College St., Oberlin, OH 44074; email:
ken s stanley@yahoo.com.
c©2005 Association for Computing Machinery. ACM acknowledges that this contribution was au-
thored or co-authored by a contractor or affiliate of the [U.S.] Government. As such, the Government
retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to
do so, for Government purposes only.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2005 ACM 0098-3500/05/0900-0397 $5.00

ACM Transactions on Mathematical Software, Vol. 31, No. 3, September 2005, Pages 397–423.

398 • M. A. Heroux et al.

and how these services are used by various packages. We also illustrate how packages can be
combined to rapidly develop new algorithms. Finally, we discuss how Trilinos facilitates high-
quality software engineering practices that are increasingly required from simulation software.

Categories and Subject Descriptors: G.1.3 [Numerical Analysis]: Numerical Linear Algebra; G.4
[Mathematical Software]; D.2.13 [Software Engineering]: Reusable Software

General Terms: Algorithms, Design, Performance, Reliability

Additional Key Words and Phrases: Software framework, interfaces, Software Quality Engineering

1. INTRODUCTION

Research efforts in advanced solution algorithms and parallel solver libraries
have historically had a large impact on engineering and scientific computing.
Algorithmic advances increase the range of tractable problems and reduce
the cost of solving existing problems. Well-designed solver libraries provide
a mechanism for leveraging solver development across a broad set of appli-
cations and minimize the cost of solver integration. Emphasis is required in
both new algorithms and new software in order to maximum the impact of our
efforts.

Sandia has developed scalable solver algorithms and software for many
years. Often this development has been done within the context of a specific
application code, providing a good robust solver that meets the particular needs
of that application. Even Aztec [Tuminaro et al. 1999], one of the most impor-
tant general-purpose solvers developed at Sandia, was developed specifically
for MPSalsa [Salinger et al. 1996; Shadid et al. 1995] and only later extracted
for use with other applications. Unfortunately, even though application-focused
solvers tend to be very robust and can often be made into very effective general-
purpose solvers, the opportunity to reuse the basic set of tools developed for one
solver in the development of another solver becomes very difficult.

The Trilinos Project grew out of this group of established numerical algo-
rithms efforts at Sandia, motivated by a recognition that a modest degree of
coordination across these efforts could have a large positive impact on the qual-
ity and usability of the software we produce and therefore enhance the research,
development, and integration of new solver algorithms into applications. With
the advent of Trilinos, the degree of effort required to develop new parallel
solvers has been substantially reduced, because our common infrastructure
provides a good starting point for new development. Furthermore, many ap-
plications are standardizing on the Trilinos matrix and vector classes. As a
result, these applications have access to all Trilinos capabilities without inter-
face modifications.

Trilinos has a two-level design, where the fundamental building block is a
package. Although package is a common term, we define it rigorously within
Trilinos. Specifically, each package is a numerical library (or collection of
libraries) that is

—focused on important, state-of-the-art algorithms in its problem regime, for
example, algebraic preconditioners, nonlinear solvers, scalable data models,
etc;

ACM Transactions on Mathematical Software, Vol. 31, No. 3, September 2005.

Overview of the Trilinos Project • 399

—developed by a small team of domain experts;
—self-contained, with minimal dependencies on other packages;
—configurable, buildable, tested, and documented on its own.

These packages can be distributed within Trilinos or separately. The Trilinos
framework provides a common look-and-feel that includes configuration, docu-
mentation, licensing, and bug tracking. There are also guidelines and tools for
adding new packages to Trilinos.

The Trilinos project encompasses a variety of efforts that are to some extent
self-contained but at the same time interrelated. The Trilinos design allows
individual packages to grow and mature autonomously to the extent the algo-
rithms and package developers dictate. This document provides an overview of
the project, focusing on the project philosophy and description, and providing
the reader with a summary of the project in its current state. Section 2 dis-
cusses work that is related to Trilinos. Integration of a package into Trilinos,
and what Trilinos can provide to a package, will be discussed in Section 3.
Section 4 discusses the current collection of Trilinos packages. Section 5
presents some code fragments that illustrate the interoperability of Trilinos
packages. This section also discusses the Meros package in greater detail be-
cause it illustrates how multiple Trilinos packages can be combined to quickly
provide production implementations of state-of-the-art algorithms. Finally,
Section 6 discusses the role of Trilinos to improve software quality and reduce
the cost of software quality assurance processes, an increasingly important as-
pect of computer modeling and simulation for science and engineering, and
Section 7 presents our conclusions.

2. RELATED WORK

General-purpose solver libraries have been used successfully across a broad
set of applications and computer systems. EISPACK [Smith et al. 1976],
LINPACK [Dongarra et al. 1979], and LAPACK [Anderson et al. 1995] are just
a few of the many libraries that have made a tremendous impact, providing
robust portable solvers to a broad set of applications. More recently, libraries
such as PETSc [Balay et al. 1997, 1998a, 1998b], ScaLAPACK [Blackford et al.
1997], PLAPACK [Alpatov et al. 1997], and Aztec [Tuminaro et al. 1999] have
enabled the development of parallel applications by giving users access to par-
allel distributed memory solvers that are easy-to-use and robust.

The purpose of the Trilinos project is to foster development of new solver
libraries by minimizing the costs of new development, while still leveraging the
investment in established libraries such as those just mentioned. These two
goals are accomplished by active research and development of new libraries
and by use of the Trilinos package architecture. Although Trilinos is unique
in design, a number of other projects have some similarities. In particular,
PETSc, the Common Component Architecture (CCA) [Forum 2004], the Matrix
Template Library (MTL) [A. Lumsdaine 2004], and POOMA [Oldham 2002]
share attributes with Trilinos.

ACM Transactions on Mathematical Software, Vol. 31, No. 3, September 2005.

400 • M. A. Heroux et al.

2.1 Trilinos and PETSc

Trilinos is similar to PETSc in that both provide libraries for constructing and
using sparse and dense distributed matrices and vectors. Also, both projects
provide solver libraries for linear, nonlinear, time-dependent, and eigenvalue
problems. Trilinos differs from PETSc in that Trilinos is written primarily in
C++ and has an explicit modular architecture, and each package is interoper-
able with other packages but not interdependent. Most Trilinos packages are
data-neutral in design and in fact could easily use PETSc libraries to provide a
variety of capabilities via straightforward implementation of documented ab-
stract interfaces, without modifying PETSc or Trilinos source code.

2.2 Trilinos and the Common Component Architecture

The Trilinos package architecture, which is the primary difference between
Trilinos and PETSc, is the primary similarity between Trilinos and the CCA.
Like the CCA, the Trilinos package architecture supports interoperability of
independent pieces of software. However, the CCA uses an advanced runtime
environment to manage the coupling of components, whereas Trilinos uses
configure-enabled conditional compilation and the polymorphism that is inher-
ent in the C++ language. Both approaches are essential and very compatible.
In fact, the modularity and independence of Trilinos packages make them easy
to wrap as CCA components.

2.3 Trilinos and MTL

The Trilinos packages Epetra and Tpetra are similar to MTL. All three are
written in C++ and provide numerical linear algebra objects that can be used
to implement numerical algorithms. MTL makes more aggressive use of tem-
plate facilities in C++ and allows more elegant and flexible implementations.
However, portability of MTL is a major issue since a number of C++ compilers do
not support some of the features used by MTL. Another difference is that MTL
provides its own functionality that is similar to the BLAS, whereas Epetra and
Tpetra rely on BLAS libraries for performance. A final major difference is that
MTL executes on serial machines only. Epetra and Tpetra support distributed
memory objects and provide parallel data repartitioning capabilities [Boman
et al. 2004].

2.4 Trilinos and POOMA

Trilinos and POOMA are similar in that they both provide serial and paral-
lel distributed memory linear algebra objects, along with automatic support
of interprocessor communication. POOMA differs from Trilinos in its focus on
arrays and overloaded operator syntax, which make grid-based calculations
and explicit methods easy to implement. In fact, much of POOMA terminology
uses grid concepts. POOMA also focuses only on basic linear algebra compu-
tations. No implicit solvers are provided, although grid-based implicit solvers
can be easily built using POOMA objects. Trilinos packages such as Epetra and
Tpetra can be used for grid-based computations, but their primary focus is on

ACM Transactions on Mathematical Software, Vol. 31, No. 3, September 2005.

Overview of the Trilinos Project • 401

irregular, unstructured computations. Other Trilinos packages access linear al-
gebra services via abstract vector and operator interfaces. Therefore, POOMA
object could be used via these interfaces.

2.5 Trilinos and Other Solver Libraries

Trilinos provides significant new solver capabilities as self-contained Trilinos
packages. It also provides an explicit, documented, modular architecture that
facilitates interoperability. This allows Trilinos to easily use other solver li-
braries and to also provide, via any individual Trilinos package, solver capabil-
ities to other libraries. External solver libraries are made Trilinos-compatible,
not by integrating them into Trilinos, but by augmenting the capabilities of the
external library. This difference in design philosophy is subtle but important,
especially for scalable growth in package count. Using this approach, Trilinos
will never become a large monolithic piece of software, something that is very
important as the volume of solver software continues to grow.

3. TRILINOS PACKAGE ARCHITECTURE AND SERVICES

In our experience mathematical libraries tend to be written by small teams of
domain experts. For example, approximately 25 staff members (not including
students) contribute to Trilinos development across approximately 25 different
packages, but most individual Trilinos packages are developed by one to three
staff members, and no single package has more than five developers. Some
staff members contribute to more than one package, but very few contribute to
more than three packages. Another observation is that mathematical libraries
tend to be written by experienced numerical software developers who do not
have much, if any, experience with formal software tools and processes. Both
of these observations have motivated the Trilinos design and implementation.
The Trilinos package architecture naturally supports small interrelated team
development efforts. Trilinos services, provided on a package-by-package basis,
directly address the second observation.

3.1 Modularity via Packages

Each Trilinos package is fully self-sufficient and self-contained, unless there
are explicit dependencies designed into a package. Package source code and
revision history are contained within a single directory structure. Mail lists,
software faults, documentation, Web sites and interoperability are all organized
via packages.

Package interoperability is accomplished via configure-time enabling of
package-to-package coupling. For example, the algebraic preconditioner pack-
age called IFPACK has many parameters to control how preconditioners are
constructed and used, for example, level of fill in an incomplete factorization.
Teuchos, described in Section 4.1, is a package of commonly used utility classes
such as portable BLAS interfaces and timers. Teuchos provides a parame-
ter list class that can be used to specify parameter values. If the argument
--enable-teuchos is specified when IFPACK is configured, Teuchos Parame-
terList support will be compiled in IFPACK; otherwise this code will not be

ACM Transactions on Mathematical Software, Vol. 31, No. 3, September 2005.

402 • M. A. Heroux et al.

enabled and only IFPACK’s internal parameter setting method is available.
Configure-time enabling of package interoperability is commonly used for any
optional package coupling that makes sense. In this way packages retain au-
tonomy but can easily be combined with any other package that makes sense
algorithmically.

3.2 Package Services Provided by Trilinos

Trilinos provides a variety of services to package developers. When a new
package is introduced into Trilinos, each of these services is established, imme-
diately providing the new package with necessary tools to address important
software quality engineering practices (see Section 6 for details). All tools are
accessible from the main Trilinos Web site [Heroux 2004]. Specifically the ser-
vices we establish are

—Source code repository: Trilinos source code is maintained in a CVS [Free
Software Foundation 2004c] repository that is accessible via a secure con-
nection from anywhere on the internet. For most new packages, use of a
supported CVS repository is the most important service Trilinos provides,
since development is typically in the early stages and there are few if any
users.

—Mail lists: Trilinos uses the Mailman [Free Software Foundation 2004e]
list manager to provide communication support for each package. Package
lists start with the package name followed by the list function, for example,
AztecOO-Announce. The following mail lists are established for each pack-
age:
—Package-Announce. All news related to this package is sent to this list,

such as release announcements, etc.
—Package-Developers. Package developer discussions occur on this list, in-

cluding design and policy discussions. Key development decisions are
posted here for archival purposes.

—Package-Users. List for package users. General discussions about use of
the package are conducted here, typically monitored by the package devel-
opment team.

—Package-Checkins. All log messages that are submitted with source code
changes to the CVS repository are sent to this list. Anyone wishing to see
the moment-to-moment activity in package development can subscribe to
this list.

—Package-Regression. All output from the regression test suite for the pack-
age is sent to this list.

—Issue tracking: Bugzilla [The Mozilla Organization 2004b] is a Web-based
issue-tracking application that supports submission and tracking of soft-
ware issues, including enhancements and faults. Each package has its own
Bugzilla product.

—Fault identification: Bonsai [The Mozilla Organization 2004a] is a Web-based
application that supports a variety of CVS repository browsing capabilities,
and links changes in the repository to Bugzilla issues. Bonsai is most useful

ACM Transactions on Mathematical Software, Vol. 31, No. 3, September 2005.

Overview of the Trilinos Project • 403

as a way to quickly identify changes in source code that have cause a software
fault.

—Configuration management: Autoconf [Free Software Foundation 2004a],
Automake [Free Software Foundation 2004b], and Libtool [Free Software
Foundation 2004f] provide a robust, full-featured set of tools for building
software across a broad set of platforms (see also the “Goat Book” [Vaughan
et al. 2000]). Although these tools are not official standards, they are widely
used. All existing Trilinos packages use Autoconf and Automake. Libtool
support will be added in future releases.

Trilinos provides a library of M4 [Free Software Foundation 2004d] macros
that can be used by any other package that wants to use Autoconf and
Automake for configuring and building libraries. These macros perform com-
mon configuration tasks such as locating a valid LAPACK [Anderson et al.
1995] library, checking for a user-defined MPI [Snir et al. 1998] C compiler, or
determining interlanguage linking rules. This library of macros minimizes
the amount of redundant effort in using Autotools, and make it easier to
apply a general change to the configure process for all packages.

—Automated regression testing: Trilinos provides a variety of regression testing
capabilities. Integrating new tests into Trilinos is accomplished by creating
specially named directories in the CVS repository and creating scripts that
run package tests. For example, an executable script committed to the repos-
itory in the directory Trilinos/packages/epetra/test/scripts/daily/serial can be
executed manually and will also run daily on any platform that has the Epe-
tra serial test harness installed, as part of the automated regression test
harness. On a nightly basis, the test harness builds the most recent versions
of Trilinos libraries and runs any tests that are present in one of these special
directories.

3.3 The new package Package

In order to reduce the startup time for a new Trilinos package, whether it is the
importing of existing software or development of new source, the new package
package provides a good starting point for accessing the services that Trilinos
provides. new package provides a starting point for the following:

—project organization. It illustrates one way of organizing files for a mathe-
matical software package.

—autotools. It provides simple working example using autotools, and a set of
M4 macros.

—automatically generated reference documentation. It shows how to mark up
source code and use Doxygen [van Heesch 2004] to produce accurate, exten-
sive source code documentation.

—regression testing. Simple regression testing example is part of new package.
—Web site. The Trilinos home page [Heroux 2004] contains a new package Web

site that includes instruction on how to copy and modify the new package Web
source for use with a new Trilinos package.

ACM Transactions on Mathematical Software, Vol. 31, No. 3, September 2005.

404 • M. A. Heroux et al.

Note: It is worth mentioning that the Trilinos new package package can be
useful independent of Trilinos itself. Like all Trilinos packages, new package
is self-contained, and can be configured and built independently from the rest
of Trilinos. Similarly, the new package Web site is self-contained and indepen-
dent from the rest of the Trilinos Web site. Both new package and its Web
site have been successfully used by other projects that have nothing to do with
Trilinos.

3.4 Package Maturation Process

Typically in the early development stages of a new package, many of the services
mentioned above are not heavily used. In fact, the new package is often isolated
from other packages and use of the CVS repository is of primary importance.
As the package matures and the user base grows, package use of the other
services also grows, as does the need for interoperability with other packages.
Gradually, over the span of several years, a package matures to the point where
it is fully using all the services provided by Trilinos and is fully interoperable
with other packages.

One strength of the Trilinos package architecture is its natural support of
gradual package maturation. At any given point in time, each Trilinos package
can be in any state of development. As a Trilinos release date approaches, we
categorize packages for public, limited, or no release. For each package that will
be released, the package development team certifies the package and provides
us with a repository tag for the tested version of the package. In this way, even
the release process is distributed and scalable.

4. OVERVIEW OF CURRENT PACKAGE DEVELOPMENT

Trilinos package counts have grown rapidly in the 4 years of its existence. The
Tri in Trilinos originally stood for the initial three packages it contained. Table I
shows a brief description and status of packages that have been part of the past
two releases. In this section we provide an overview of the primary packages
in current release of Trilinos. The discussion is ordered so that packages that
are most fundamental and broadly useful are presented first.

4.1 Common Tools Package: Teuchos

As the number of Trilinos packages grows, we have developed the need for a col-
lection of tools that can be leveraged across all packages. The Teuchos package
is a relatively recent addition to Trilinos to facilitate collection of the common
tools. In order to retain the autonomy of other Trilinos packages, no package is
required to adopt Teuchos classes. However, a design goal of Teuchos is robust-
ness and portability such that dependency on Teuchos is not a practical liability.
Many packages have some interoperability with Teuchos but very few have an
essential dependence on it. Parameter values for most high-level packages can
be set using the Teuchos ParameterList class. For example, the ML, IFPACK,
and AztecOO parameters can be set this way, as long as Teuchos support was
enabled (via --enable-teuchos) at configure time.

ACM Transactions on Mathematical Software, Vol. 31, No. 3, September 2005.

Overview of the Trilinos Project • 405

Table I. Trilinos Package Summary and Release Status

Release
3.1 (Sep 2003) 4.0 (Jun 2004)

Package Description General Limited General Limited
Amesos 3rd-party direct solver suite X X X
Anasazi Eigensolver package X X
AztecOO Linear iterative methods X X X X
Belos Block linear solvers X
Epetra Basic linear algebra X X X X
EpetraExt Extensions to Epetra X X X
Ifpack Algebraic preconditioners X X X X
Jpetra Java Petra implementation X
Kokkos Sparse kernels X X
Komplex Complex linear methods X X X X
LOCA Bifurcation analysis tools X X X X
Meros Segregated preconditioners X X
ML Multilevel preconditioners X X X X
NewPackage Working package prototype X X X X
NOX Nonlinear solvers X X X X
Pliris Dense direct solvers X
Teuchos Common utilities X X
TSFCore Abstract solver API X X
TSFExt Extensions to TSFCore X X
Tpetra Templated Petra X

Totals 8 11 15 20

Teuchos provides classes and interfaces for the following:

(1) Templated access to BLAS and LAPACK interfaces. Teuchos provides a set
of interfaces that have templated ordinal and scalar types. Typically the
ordinal type is the common integer type. For the scalar type, in cases where
the template is of type single, double, complex single, complex double, the
user will be linked to standard BLAS and LAPACK functions. For other
data types, we provide generic loops sets for a limited set of key kernels.
Support for two multiprecision scalar datatypes is already provided, specif-
ically ARPREC [Bailey et al. 2002] and GMP [Granlund 2004].

(2) Parameter lists. A parameter list is a collection of key-value pairs that
can be used to communicate with a packages. A parameter can be used
to tune how a package is used, or can provide information back to the
user from a package. For example the pair (“Residual Tolerance,” 1.0E-6)
could be used to specify the tolerance that a package should use for conver-
gence testing in an iterative process. Similarly, the pair (“Residual Norm,”
9.3245E-7) can be passed back to the user as the actual computed residual
norm.

(3) Memory management tools. Classes for aiding in correct allocation and dele-
tion of memory. In particular, Teuchos provides a reference counting pointer
class that allows multiple references to a single object, deleting the object
after the last reference is removed. These tools are very helpful in reducing
the possibility of memory leaks in a program.

ACM Transactions on Mathematical Software, Vol. 31, No. 3, September 2005.

406 • M. A. Heroux et al.

(4) Traits. Traits mechanisms [Myers 1995] are effective techniques for provid-
ing detailed information about supported generic data types. Teuchos pro-
vides three types of traits: ScalarTraits, OrdinalTraits, and PacketTraits.
ScalarTraits defines a variety of properties for supported scalar types. A
partial list of traits includes
—zero (one). The appropriate value for zero (one) for the given scalar type.
—magnitudetype. The data type that would be used by a norm for the given

scalar type. For example, the magnitude type for double and complex
double is double.

—random. The function that produces a single random value of the given
scalar type.

OrdinalTraits provides information for data types such as int. Again zero
and one are defined, as is a descriptive label. Other ordinal traits are not
needed at this point. PacketTraits is used to define the “size” of a packet
type. This allows generic use of data transfer algorithms such as distributed
data communications via MPI.

(5) Operation counts. This class provides mechanisms for tracking and report-
ing operation counts, and associating a counting object with one or more
computational objects.

(6) Exception handler. Error reporting class for uniform exception handling.
(7) Timers. Uniform interface to wall-clock timers.

Although Teuchos has been available for less than a year, it has been adopted
by many packages to provide functionality and uniform access by applications.
Teuchos parameter lists and BLAS interfaces have been especially useful.

4.2 The Petra Object Model and Packages

Matrices, vectors, and graphs are basic objects used in most solver algorithms.
Most Trilinos packages interact with these kinds of objects via abstract inter-
faces that allow a package to define what services and behaviors are expected
from the objects, without enforcing a specific implementation. However, in order
to use these packages, some concrete implementation must be selected.

The Petra class libraries provide a foundation for all Trilinos solver devel-
opment. Petra provides classes for constructing and using parallel, distributed
memory matrices and vectors. Petra exists in multiple forms. Its most basic
form is as an object model [Heroux et al. 2004]. As such, it is an abstract de-
scription of a variety of vector, matrix, and supporting classes, along with a
description of how these classes interact. There are presently three implemen-
tations of the Petra Object Model: Epetra, Tpetra, and Jpetra. Before describing
these implementations, we first discuss distribution concepts.

Although a detailed discussion of data and work distribution in the Petra
Object Model is beyond the scope of this article, we briefly present these top-
ics. We also introduce ElementSpace objects, objects that describe the layout of
distributed objects in Petra, and their relationship to distributed vectors, mul-
tivectors, graphs, and matrices. A full description of the Petra Object Model can
be found in Boman et al. [2004].

ACM Transactions on Mathematical Software, Vol. 31, No. 3, September 2005.

Overview of the Trilinos Project • 407

Table II. Packet Definitions for Common Petra Object Types

Object Packet Definition
Vector Single vector value
Multivector Row of vector values
Compressed Index Storage Graph

(CISGraph)
List of column/row indices for one graph row/column

Compressed Index Storage Matrix
(CISMatrix)

List of values and column/row indices for one matrix
row/column

Table III. Standard Distribution of 99 Elements

Processor ID Element GIDs
0 {0, 1, . . . , 24}
1 {25, 26, . . . , 49}
2 {50, 51, . . . , 74}
3 {75, 76, . . . , 98}

A critical feature of Petra is the ability to easily define and efficiently ex-
ecute data redistribution in parallel. Because of this, Petra’s data model is
built around this concept. Data redistribution requires the identification of
data packets that should be moved as part of the redistribution. For a simple
vector that is distributed across a parallel machine, the natural packet is a
single vector value. For a collection of vectors with the same distribution, what
we define to be a multivector, the natural packet is all values across a row of
column vectors. For matrices, if we store nonzero entries row-by-row, then the
index and nonzero values data are used to define a packet. We can similarly
define a column-oriented matrix, or more generally a compressed index ma-
trix, where the row or column orientation is part of the definition of the class
attributes. A compressed index graph is similar to a matrix, except that it in-
volves pattern information only. Table II lists the common linear algebra objects
we use, and describes the packet definition for each object.

To facilitate redistribution and provide a generic analysis capability, we use
elements as a representation of packets. Specifically, regardless of packet defini-
tion, we associate an element global ID (GID) with each packet of a distributed
object. We do this by defining an ElementSpace object (called a Map object in
Epetra). ElementSpace objects are used to

(1) define the layout of distributed object across a parallel machine, and
(2) compute a plan to redistribute an object distributed via one ElementSpace

to another ElementSpace distribution.

Example: suppose we want to construct a vector with 99 entries so that it
is approximately evenly distributed across four processors, and vector entries
are stored in increasing order. Table III lists a natural distribution of element
GIDs that would describe the layout of this type of vector.

In our object-oriented model, we construct a distributed object by first defin-
ing an ElementSpace object. Given an ElementSpace object, we can define any
number of linear algebra objects with a compatible layout. For example, using
an ElementSpace object with the element ID distribution in Table III, we can

ACM Transactions on Mathematical Software, Vol. 31, No. 3, September 2005.

408 • M. A. Heroux et al.

define any number of vectors having the first 25 vector entries on PE 0, the
next 25 on PE 1, etc. We can also define a row matrix having rows 0 through 24
on PE 0, rows 25 through 49 on PE 1, etc. It is worth noting that, although the
example in Table III is a simple linear distribution of GIDs, ElementSpace ob-
jects can contain GIDs in any order and multiplicity on any processor. This
ability is important for data redistribution and replicating data across the
parallel machine.

For distributed matrices and graphs, four ElementSpace objects are needed:

—RowElementSpace. On each processor this ElementSpace lists the GIDs that
will be “managed” by that processor, typically meaning that the processor
owns part or all of the data associated with that row.

—ColumnElementSpace. Same as RowElementSpace, except that it deals with
columns.

—DomainElementSpace. The distribution of GIDs associated with vectors and
multivectors that are in the domain of the matrix. These GIDs must be
uniquely associated with a processor.

—RangeElementSpace. Same as DomainElementSpace, except that it deals
with the range space.

Given this general framework, the Petra Object Model supports any dis-
tribution of data across the parallel machine. Any matrix, graph, vector, or
multivector entry can be owned by any processor, or shared or replicated across
multiple processors. Depending on the type of constructor used, data may be
assigned by any processor, even if the processor is not the eventual owner of the
data. A more efficient class of constructors requires that the processor which
owns the data (as prescribed by the relevant ElementSpace objects) must define
the data. Some constructors support data entry that is in between these two
extremes. Finally, operations between matrices and vectors can be performed
on objects with different distributions as long as the DomainElementSpace and
RangeElementSpace objects are compatible with the appropriate vectors.

We have only briefly touched on the data distribution and redistribution
capabilities provided by the Petra Object Model. However, for brevity we now
move on to a description of the three Petra implementations.

4.2.1 Epetra: Essential Implementation of Petra Object Model. Epe-
tra [Heroux 2002], the current production version of Petra, is written for real-
valued double-precision scalar field data only, and restricts itself to a stable core
of the C++ language standard. As such, Epetra is very portable and stable, and is
accessible to Fortran and C users. Epetra combines in a single package (i) sup-
port for generic parallel machine descriptions, (ii) extensive use of standard
numerical libraries including BLAS and LAPACK, (iii) use of object-oriented
C++ programming and (iv) parallel data redistribution. The availability of
Epetra has facilitated rapid development of numerous applications and solvers
at Sandia because many of the complicated issues of working on a parallel
distributed memory machine are handled by Epetra.

Application developers can use Epetra to construct and manipulate matri-
ces and vectors, and then pass these objects to most Trilinos solver packages.

ACM Transactions on Mathematical Software, Vol. 31, No. 3, September 2005.

Overview of the Trilinos Project • 409

Furthermore, solver developers can develop new algorithms using Epetra
classes to handle the intricacies of parallel execution. Epetra also has extensive
parallel data redistribution capabilities, including an interface to the Zoltan
load-balancing library [Devine et al. 1999]. Epetra is split into two packages: a
core package and a set of extensions. As mentioned above, Epetra supports only
double-precision real arithmetic. Support for other types is found in Tpetra.

4.2.2 Tpetra: Templated C++ Implementation of Petra Object Model. In ad-
dition to Epetra, we are developing a templated version of Petra, called Tpetra,
that implements the scalar and ordinal fields as templated types. Tpetra allows
matrices and vectors to be composed of real or complex, and single or double pre-
cision, scalar values. Building on Teuchos, Tpetra provides distributed memory
parallel support for generic datatypes. Additionally, Tpetra also uses the C++
language standard more fully. In particular, it utilizes the Standard Template
Library (STL) [Stroustrup 2000], to provide good algorithmic efficiency with
minimal code development.

4.2.3 Jpetra: Java Implementation of Petra Object Model. The primary de-
sign goals of Jpetra are to produce a library that is a high-performance, pure
Java implementation of Petra. By restricting ourselves to Java and avoiding
the use of the Java Native Interface (JNI) [Sun Microsystems 2003] to link to
other libraries, we get the byte-code portability that Java promises. The fun-
damental implication of these goals is that we cannot rely on BLAS, LAPACK,
or MPI since they are not written in Java, and we do not use the JNI. As such,
we must track the development of pure Java equivalents of these libraries.
Several efforts, including Ninja [Moreira et al. 2001] and MPJ [Carpenter et al.
2000], provide equivalent functionality to the BLAS, LAPACK, and MPI, but
are completely written in Java. Presently we are using CCJ [Nelisse et al. 2003]
as the implementation of the Jpetra parallel machine interface for internode
communications, and we are using JLAPACK [Doolin et al. 1998] to implement
our interface for serial linear algebra kernels.

4.3 TSF: The Trilinos Abstract Class Packages

Many different algorithms are available to solve any given numerical problem.
For example, there are many algorithms for solving a system of linear equations,
and many solver packages are available to solve linear systems. Which package
is appropriate is a function of many details about the problem being solved and
the platform on which application is being run. However, even though there
are many different solvers, conceptually, from an abstract view, these solvers
are providing a similar capability, and it is advantageous to utilize this ab-
stract view. TSF is a collection of abstract classes that provides an application
programmer interface (API) to perform the most common solver operations. It
can provide a single interface to many different solvers. Furthermore, TSFEx-
tended has powerful compositional mechanisms that support the light-weight
construction of composite objects from a set of existing objects (see Section 5.2).
As a result, TSF users gain easy access to many solvers and can bring multiple
solvers to bear on a single problem.

ACM Transactions on Mathematical Software, Vol. 31, No. 3, September 2005.

410 • M. A. Heroux et al.

TSF is split into several packages. The most important user-oriented classes
are TSFCore and TSFExtended:

(1) TSFCore. As its name implies, TSFCore contains a small set of core classes
that are considered essential to almost any abstract linear algebra interface.
The primary user classes in TSFCore are Vector, MultiVector, LinearOp, and
VectorSpace. TSFCore is discussed in detail in Bartlett et al. [2003].

(2) TSFExtended. TSFExtended builds on top of TSFCore and includes over-
loaded, block, and composite operators, all of which support powerful
abstraction capabilities. The Meros package relies on TSFExtended to im-
plicitly construct sophisticated Schur compliment preconditioners in terms
of existing component operators with little overhead in time or memory.
Section 5.2 discusses this topic in detail.

Both TSFCore and TSFExtended are important because they allow interfac-
ing to and sophisticated use of numerical linear algebra objects without requir-
ing the user or application to commit to any particular concrete linear algebra
library. This approach allows us to leverage the investment in sophisticated ab-
stract numerical algorithms across many concrete linear algebra libraries and
gives application developers a single API that provides access to many solver
packages.

4.4 AztecOO: Concrete Preconditioned Iterative Solvers

AztecOO is an object-oriented follow-on to Aztec [Tuminaro et al. 1999]. As
such, it has all of the same capabilities as Aztec, but provides a more elegant
interface and numerous functionality extensions. AztecOO specifically solves
a linear system AX = B, where A is a linear operator, X is a multivector
containing one or more initial guesses on entry and the corresponding solutions
on exit, and B contains the corresponding right-hand-sides.

AztecOO accepts user matrices and vectors as Epetra objects. The operator A
and any preconditioner, say M ≈ A−1, need not be concrete Epetra objects. In-
stead, AztecOO expects A and M to be Epetra Operator or Epetra RowMatrix
objects. Both Epetra Operator and Epetra RowMatrix are pure virtual classes.
Therefore, any other matrix library can be used to supply A and M , as long as
that library can implement the Epetra Operator or Epetra RowMatrix inter-
faces, something that is fairly straightforward for most linear solver libraries.

AztecOO provides scalings, parallel domain decomposition preconditioners,
and a very robust set of Krylov methods. It runs very efficiently on distributed
memory parallel computers or on serial computers. Also, AztecOO implements
the Epetra Operator interface. Therefore, an AztecOO solver object can be used
as a preconditioner for another AztecOO object.

4.5 Belos: Generic Implementation of Krylov and Block Krylov Methods

Belos contains a collection of standard Krylov methods such as conjugate gradi-
ents (CG), GMRES, and Bi-CGSTAB. It also contains flexible and block variants
of CG and GMRES. The flexible variants allow variable preconditioners to be
used, such that the preconditioner at each iteration can change. Block variants

ACM Transactions on Mathematical Software, Vol. 31, No. 3, September 2005.

Overview of the Trilinos Project • 411

allow the solution of multiple simultaneous right-hand sides. Block methods
can also be very effective for problems that have just a few small eigenvalues,
even if the solution to only a single right-hand side is needed.

Belos is considered a generic implementation because it relies on TSF inter-
faces for access to linear operator, preconditioner, and vector objects. Therefore
it is not explicitly tied to any concrete linear algebra library and can in princi-
ple be used with any library that implements the TSF interfaces. In particular,
Epetra can be used since Trilinos provides an Epetra implementation of the
TSF interfaces.

4.6 Amesos: Object-Oriented Interface to Direct Solvers

The Amesos package is markedly different than most other Trilinos packages.
It is designed to provide a common interface to a collection of third-party direct
sparse solvers. There are a number of high-quality direct sparse solvers avail-
able to the general public, each of which (i) has a unique interface and (ii) can be
especially suitable for specific uses. Because of this, we provide access to these
solvers through a common interface. Specifically, we provide interfaces to all di-
rect solvers supported by Amesos. These interfaces allow Epetra matrices and
vectors to be used with each third-party solver. At this time, we provide support
for SuperLU (serial), SuperLUDist [Li and Demmel 2003], Kundert’s Sparse
solver (from Spice [Quarles et al. 2003]), DSCPack [Raghavan 2003], UMFPack
[Davis 2003] and MUMPS [Amestoy et al. 2003]. Amesos also wholly contains
a single serial solver called KLU [Davis and Stanley 2004]. KLU provides us
with a default solver capability, even when no third-party solver is available.

In addition to providing access to third-party solvers, Amesos provides an ab-
stract base class that facilitates generic use of a third-party solver once a solver
object is instantiated. This abstract interface is implemented by each Amesos
direct solver class. For example, except for the construction phase (which
can be accomplished generically using a “factory” as described in the Design
Patterns book [Gamma et al. 1994]), an instance of a solver object, whether it
be a SuperLU solver instance, DSCPack, etc., can be driven via the Amesos
base solver interface. This interface allows the user to request computation of a
symbolic factorization, numeric factorization, and a solve. How a specific third-
party package is used to implement these can vary. The primary purpose of the
Amesos base solver interface is to support efficient reuse of information. Specif-
ically, if a sequence of factorizations uses the same nonzero structure but has
different values, the Amesos base solver class can allow efficient reuse of the
structure. Similarly, repeated right-hand-side solves can be done sequentially.

4.7 Komplex: Solver Suite for Complex-Valued Linear Systems

Komplex solves complex-valued linear systems using equivalent real-valued
formulations of twice the dimension. It constructs an equivalent real-valued
formulation for a given complex-valued linear system and then calls AztecOO
to solve the problem, returning the solution back to the user in a form com-
patible with the original complex-valued problem. Details of mathematical and
practical issues of Komplex can be found in Day and Heroux [2001].

ACM Transactions on Mathematical Software, Vol. 31, No. 3, September 2005.

412 • M. A. Heroux et al.

4.8 Ifpack: Parallel Algebraic Preconditioners

Ifpack provides local incomplete factorization preconditioners in a parallel do-
main decomposition framework. It accepts user data as Epetra RowMatrix ob-
jects (including Epetra CrsMatrix, Epetra VbrMatrix, and Epetra MsrMatrix
objects, since these classes implement the Epetra RowMatrix interface) and
can construct a variety of algebraic preconditioners. Ifpack preconditioners im-
plement the Epetra Operator interface. Therefore, they can be used as precon-
ditioners for AztecOO. The current released version of Ifpack provides a relaxed
ILUK preconditioner and incomplete Cholesky with threshold dropping.

4.9 ML: Multilevel Preconditioner Package

ML is a multilevel preconditioner package for solving linear systems from par-
tial differential equation (PDE) discretizations. Although any linear system can
be used with ML, problems that have an underlying PDE nature have the best
chance of successful use of ML.

ML provides several approaches to constructing and solving the multilevel
problem:

(1) Algebraic smoothed aggregation approach [Vanek et al. 1996, 1998]. The
matrix graph is colored to create aggregates (groups) of nodes. These aggre-
gates define a preliminary projection operator. A final projection operator
is created by applying a smoother to the preliminary operator.

(2) Algebraic multigrid for Maxwell’s equations. This approach is intended for
preconditioning linear systems of the form Ax = b, where A = S + M , S is
a discrete form of the operator ∇ ×∇ × E, M is a mass matrix, and E is the
electric field. Such systems arise from discretizations of the eddy current
approximations to Maxwell’s equations by either edge elements or Yee-type
schemes [Bochev et al. 2003; Yee 1966].

(3) Adaptive grid approach. The original grid is used as the coarse grid and
the adaptive refinements determined the fine grid. Prolongation and re-
striction operators are determined using simple interpolation and weighted
injection.

(4) Two-grid approach. A fine and (very) coarse grid are used. Graph and spatial
coordinates are used, but there is no necessary correlation required between
the two grids.

More information is available at both the ML user’s manual [Tong and
Tuminaro 2000] and the ML Web site [Tuminaro and Hu 2004].

4.10 Meros

Meros uses the compositional, aggregation and overloaded operator capabili-
ties of TSF to provide segregated/block preconditioners for linear systems re-
lated to fully coupled Navier-Stokes problems. This class of preconditioners
exploits the special properties of these problems to segregate the equations
and use multilevel preconditioners on the matrix subblocks. The overall perfor-
mance and scalability of these preconditioners approaches that of multigrid for

ACM Transactions on Mathematical Software, Vol. 31, No. 3, September 2005.

Overview of the Trilinos Project • 413

certain types of problems. Although the present target problems are related to
computational fluid dynamics, Meros itself is purely algebraic. Because of this,
other types of applications can potentially use Meros if a similar underlying
physics structure is present. The details of Meros are discussed in Section 5.2.

4.11 NOX: Nonlinear Solver Package

NOX provides a suite of nonlinear solver methods that can be easily integrated
into an application. Historically, many applications have called linear solvers
as libraries, but have provided their own nonlinear solver software. NOX can
be an improvement because it provides a much larger collection of nonlinear
methods, and can be easily extended as new nonlinear methods are developed.

NOX currently contains basic solvers such as Newton’s method as well as
multiple globalizations including line search and trust region algorithms. Line
search algorithms include full step, backtracking (interval halving), polyno-
mial (quadratic and cubic), and More-Thuente. Directions for the backtracking
algorithms include steepest descent, Newton, quasi-Newton, and Broyden.

NOX does not depend on any particular linear algebra package, making it
easy to install. In order to interface to NOX, the user needs to supply methods
that derive from the NOX Vector and Group abstract classes. The Vector inter-
face supports basic vector operations such as dot products and vector updates.
The Group interface supports nonvector linear algebra functionality and con-
tains methods to evaluate the function and, optionally, the Jacobian. Although
users can provide their own Vector and Group implementation, NOX provides
three implementations of its own: LAPACK, Epetra, and PETSc. Complete de-
tails are provided at the NOX Web site [Kolda and Pawlowski 2004].

4.12 LOCA: Library of Continuation Algorithms

LOCA is a package of scalable continuation and bifurcation analysis algorithms.
It is designed as an extension to the NOX nonlinear solver package since the
interfacing requirements are a superset of those needed for nonlinear solution.
When integrated into an application code, LOCA enables the tracking of so-
lution branches as a function of system parameters and the direct tracking of
bifurcation points. It also provides an interface to the Anasazi Eigensolver for
obtaining linear stability information. The algorithms are chosen to work with
codes that use Newton’s method to reach steady solutions and to have minimal
additional interfacing requirements over the nonlinear solver. Furthermore,
they are designed for scalability to large problems, such as those that arise
from discretizations of partial differential equations, and to run on distributed
memory parallel machines [Salinger et al. 2002].

4.13 Anasazi: Eigensolver Package

Anasazi is an extensible and interoperable framework for large-scale eigen-
value algorithms written using TSF interfaces to abstract operator and vector
objects. The first version of Anasazi includes block implicitly restarted Arnoldi
and Lanczos methods and preconditioned eigensolvers. These include a lo-
cally optimal block preconditioned conjugate gradient iteration (LOBPCG) for

ACM Transactions on Mathematical Software, Vol. 31, No. 3, September 2005.

414 • M. A. Heroux et al.

symmetric positive definite generalized eigenvalue problems, and a restarted
preconditioned eigensolver for nonsymmetric eigenvalue problems. Details can
be found at the Anasazi home page [Thornquist et al. 2004].

4.14 Future Packages

In addition to the packages discussed above, we anticipate the inclusion of nu-
merous new packages in the coming years. The Trilinos framework offers an
attractive setting for algorithm developers who want a well-supported software
environment and distribution mechanism, as well as the ability use their soft-
ware with other packages. Presently we anticipate incorporating PyTrilinos, a
Python interface to selected Trilinos functionality that allows use of the script-
ing language Python to drive Trilinos. The dense solver developed for, among
other things, the Linpack benchmark will also become a Trilinos package called
Pliris [Kotulski 2004]. A code for performing the nonlinear solution, continua-
tion, and stability analysis of codes with fixed-point iterations (such as explicit
integration codes), based on the Recursive Projection Method, is another solver
package under development.

5. TRILINOS PACKAGE INTEROPERABILITY

What a package must do to be Trilinos compatible is minimal, and varies with
each package. In this section we discuss the primary mechanisms for Trilinos
compatibility and then go on to illustrate with code fragments how some of
these mechanisms work. Table IV lists the six primary interoperability mecha-
nisms. Note that each mechanism is an extension or augmentation of package
capabilities, creating connections between packages. Thus, a package does not
need to change its internal structure to become Trilinos compatible.

5.1 Using Epetra Objects with Trilinos Packages

In this section we provide several examples of how Epetra matrices and vectors
can be initialized and used by multiple Trilinos packages. In this particular
case we use the Epetra entry-by-entry construction facilities for simplicity, but
it is worth noting that Epetra matrices can be efficiently constructed row-by-
row or column-by-column, where entries can be single scalar values or variable
sized block entries. There is also support for clique-based construction where,
for example, finite element stiffness matrices may be passed in to fill the matrix.
Finally, almost any combination of these fill techniques can be used on a given
matrix.

Figure 1 shows a very simple test program that builds a tridiagonal ma-
trix distributed across the parallel machine with 1000 rows per processor. The
right-hand side and solution vectors are chosen to have the same layout. We
do not require that matrices and vector have identical distributions. However,
a discussion of the parallel data distribution features of Epetra is beyond the
scope of this article. The reader is referred to Boman et al. [2004] for a full
discussion of this topic. Next we construct a linear problem, which assures that
the matrix and vectors are compatible. Finally we construct an AztecOO solver
object to solve the system using Jacobi-scaled Conjugate Gradients.

ACM Transactions on Mathematical Software, Vol. 31, No. 3, September 2005.

Overview of the Trilinos Project • 415

Table IV. Package Interoperability Mechanisms

Mechanism Comments
Package accepts user matrices

and vectors as Epetra objects. —Any package that accepts user data this way imme-
diately becomes accessible to an application that has
built its data using Epetra.

—Minimally we expect that a package can copy data
from user objects built using Epetra. Often a pack-
age can encapsulate Epetra objects without explic-
itly copying data.

Package parameters can be set
and retrieved via Teuchos
ParameterLists.

—The Teuchos ParameterList provides a uniform way
to handle parameters across packages.

—Package dependence on Teuchos is typically condi-
tional, enabled by --enable-teuchos.

Package provides adaptors to TSF
interfaces. —Most packages can supply preconditioning or solver

services in a generic sense.
—If a package provides an implementation of one or

more TSF abstract interfaces, it is usable by any
other package written using TSF interfaces.

Package can use Epetra internally.
—Epetra (and in the future Tpetra) can be used for

storing vector, matrices, etc., that are seldom or
never seen by the user.

—By using Epetra objects internally, a package can in
turn use other Trilinos packages to manipulate its
own internal objects.

Package accesses services via TSF
interfaces. —Example of generic programming.

—Allows access to multiple other Trilinos packages.

Package build process is
compatible with Trilinos
configure script.

—The Trilinos configure script supports many op-
tions such as selective enabling of packages, spec-
ification of BLAS and LAPACK location, etc.

—Packages can enhance interoperability by support-
ing these build options as appropriate.

In Figure 2 we show two different preconditioners setup processes. Each
is a legitimate substitution for the single line paramlist.set("precond",
AZ Jacobi); in Figure 1. The primary observation we make here is that, al-
though the Epetra, AztecOO, ML, and IFPACK packages are independently
developed, they are fully interoperable with each other.

5.2 An Illustration of Trilinos Interoperability

The Meros package in Trilinos is designed to provide scalable preconditioners
for the incompressible Navier-Stokes equations and similarly structured prob-
lems [Elman et al. 2003]. It is based on and extends the work of Kay et al. [2002]

ACM Transactions on Mathematical Software, Vol. 31, No. 3, September 2005.

416 • M. A. Heroux et al.

Fig. 1. Simple C++ program to construct and solve a tridiagonal system using Epetra and AztecOO.

and Silvester et al. [2001]. The discrete problem can be written in the form(
F BT

B 0

) (
u
p

)
=

(
f
0

)
. (1)

The first step in realizing the preconditioner is to formally define the block
factorization: (

F BT

B 0

)
=

(
I 0

BF−1 I

) (
F BT

0 −S

)
, (2)

where S = BF−1 BT is the Shur complement. Applying the inverse of the third
term in Equation (2) to the equation itself, we get(

F BT

B 0

) (
F BT

0 −S

)−1

=
(

I 0
BF−1 I

)
. (3)

If we could use the matrix (
F BT

0 −S

)−1

(4)

as a right preconditioner for a Krylov method applied to our original problem
(Equation (1)), then our preconditioned operator would be the right-hand side

ACM Transactions on Mathematical Software, Vol. 31, No. 3, September 2005.

Overview of the Trilinos Project • 417

Fig. 2. Two interchangeable code fragments that construct preconditioners for program in
Figure 1.

of Equation (2) and at most two iterations of GMRES would be needed for
convergence. Since this is not practical, we instead observe that we can write

(
F BT

0 −S

)−1

=
(

F −1 0
0 I

) (
I −BT

0 I

) (
I 0
0 −S−1

)
. (5)

In this form it is clear that, to apply the above preconditioner, we need to in
turn apply two nontrivial operators: S−1 to a vector in the discrete pressure

ACM Transactions on Mathematical Software, Vol. 31, No. 3, September 2005.

418 • M. A. Heroux et al.

Fig. 3. Meros interaction diagram.

space, and F −1 to a vector in the discrete velocity space. Since these tasks are
too expensive, we instead use approximations to S−1 and F −1.

A variety of approximations to S−1 and F −1 have been developed [Elman
et al. 2003]. In general, the strength of this preconditioning approach is that
well-established preconditioning methods can be applied on the subblock op-
erators, in turn building up a preconditioner for the fully coupled problem. In
particular, because the subblocks are simpler than the global problem, robust
multilevel preconditioners can be defined that provide near-mesh independent
convergence properties for the global problem.

The Meros package utilizes many features of Trilinos in order to provide a
scalable, parallel distributed memory implementation of the preconditioners
described above. It takes advantage of the abstract interfaces in TSF, both to
access other Trilinos packages and to implicitly construct approximations of
S−1 and F −1. In addition, it uses the ML package for implementing multilevel
preconditioners, AztecOO for smoothers, Ifpack for algebraic preconditioners,
NOX for nonlinear iterations, and Epetra for interfacing to the application
and for basic parallel linear algebra. Figure 3 illustrates the collaboration and
use of Trilinos packages by Meros in the context of MPSalsa [Salinger et al.
1996], a reacting flow modeling application. It is also worth noting that Meros
was integrated into the Trilinos framework using the “new package” package.
Integration took less that 1 day.

6. SOFTWARE ENGINEERING ISSUES

As computer modeling and simulation play an increasingly important role in
engineering and science, a critical issue is software quality. Multiple issues are
important, but they can be summed up as follows: if computer modeling and sim-
ulation is to be on the critical path of engineering and scientific processes, those
who rely on our software must have confidence in our computational results.

ACM Transactions on Mathematical Software, Vol. 31, No. 3, September 2005.

Overview of the Trilinos Project • 419

Table V. Trilinos Framework Support of Package SQE Practices

Trilinos service SQE practices impact
Yearly Trilinos User Group Meeting

(TUG) and Developer Forum:
Trilinos users and developers
gather once a year for tutorials,
package feature updates,
user/developer requirements
discussion, and developer
training.

—All steps of the requirements including gathering,
derivation, documentation, feasibility, etc.

—User training
—Developer training

Monthly Trilinos leaders meetings:
Trilinos leaders, including
package development leaders, key
managers, funding sources, and
other stakeholders, participate in
monthly phone meetings to
discuss any timely issues related
to the Trilinos Project.

—Requirements tracking
—Developer training
—Design reviews
—Policy decisions across all development phases

Trilinos and package mail lists:
Trilinos lists for leaders,
announcements, developers,
users, check-ins, and similar lists
at the package level support a
variety of communication. All
lists are archived, providing
critical artifacts for assessments
and audits.

—Developer, user, and client communication
—Repository of requirements, design, and testing

artifacts
—Announcement and documenting of releases

Trilinos and Trilinos3PL source
repositories: all source code,
development, and user
documentation is retained and
tracked. In addition, reference
versions of all external software,
including BLAS, LAPACK,
Umfpack, etc., are retained in
Trilinos3PL.

—Source management
—Versioning
—Third-party software management

Trilinos Bugzilla Database:
supports collection, tracking, and
management of requirements,
enhancements, and software
faults.

—Requirements gathering and tracking
—Customer support

Trilinos configure script and M4
macros: the Trilinos configure

script and related macros support
portable installation of Trilinos
and its packages..

—Portability
—Software release

Trilinos test harness: Trilinos
provides a base testing plan and
automated testing across
multiple platforms, plus creation
of testing artifacts. Test harness
results are used to derive a
variety of metrics for SQE.

—Precheck-in and regression testing
—Software metrics

ACM Transactions on Mathematical Software, Vol. 31, No. 3, September 2005.

420 • M. A. Heroux et al.

It is worth noting that, although much of the work we do to improve software
quality is technical in nature, ultimately it is our ability to instill trust in our
clients that determines whether or not our software will be used in a production
environment.

Much of Trilinos was developed under funding from the Advanced Scien-
tific Computing Initiative (ASCI). A major focus of ASCI is Software Quality
Engineering (SQE), which is the set of practices for ensuring that high-quality,
relevant software is produced, and that software processes are well defined, doc-
umented, and followed. The present ASCI SQE practices for Sandia National
Laboratories are defined in Zepper et al. [2003]. This document describes 47
practices that must be adopted by each major software project receiving ASCI
funding. These practices cover areas such as software requirements, design, im-
plementation and maintenance, project management, tracking and oversight,
verification and validation, training, and risk management.

One of the most important goals of Trilinos is to minimize the work of SQE
for the individual package development teams. Given that each package is typ-
ically written by five or fewer people, implementation of the ASCI SQE process
by each package team would be almost impossible. Fortunately, the Trilinos
infrastructure can address the majority of the ASCI SQE practice, fully or
partially. Table V highlights how Trilinos aids package developers with some of
the 47 practices listed in Zepper et al. [2003]. Details of Trilinos versus package
responsibilities are presented in Heroux et al. [2003]. In general, only those
practices that are truly unique to a package are primarily package responsi-
bilities. This gives package developers the ability to focus on the core issues of
algorithm design and implementation, and package level documentation and
testing.

7. CONCLUSIONS

In this article we have presented an overview of Trilinos, a framework for the
development and ongoing support of mathematical software libraries. By defin-
ing, documenting, and prototyping its package architecture, Trilinos provides a
ready-made infrastructure that substantially reduces the cost of mathematical
software development. As a result, Trilinos has grown rapidly and is able to con-
tinue its growth in a scalable way. Furthermore, interoperability of packages
supports a broad set of new solvers for coupled multiphysics applications that
are a critical requirement for advanced high-fidelity simulations. Finally, the
package-oriented delivery of services by Trilinos for source management, com-
munication, issue tracking, configuration management, and regression testing
allow package developers to readily obtain a high level of SQE support at min-
imal cost.

REFERENCES

A. LUMSDAINE, E. A. 2004. The matrix template library home page. Go online to http://www.osl.
iu.edu/research/mtl.

ALPATOV, P., BAKER, G., EDWARDS, C., GUNNELS, J., MORROW, G., OVERFELT, J., VAN DE GEIJN, R., AND

WU, Y.-J. J. 1997. Plapack: Parallel linear algebra package design overview. In Proceedings

ACM Transactions on Mathematical Software, Vol. 31, No. 3, September 2005.

Overview of the Trilinos Project • 421

of the 1997 ACM/IEEE Conference on Supercomputing (CDROM, San Jose, CA). ACM Press,
New York, NY, 1–16.

AMESTOY, P. R., DUFF, I. S., L’EXCELLENT, J.-Y., AND KOSTER, J. 2003. MUMPS home page. Go online
to http://www.enseeiht.fr/lima/apo/MUMPS.

ANDERSON, E., BAI, Z., BISCHOF, C., DEMMEL, J., DONGARRA, J., CROZ, J. D., GREENBAUM, A., HAMMARLING,
S., MCKENNEY, A., OSTROUCHOV, S., AND SORENSEN, D. 1995. LAPACK Users’ Guide, 2nd ed. SIAM
Press, Philadelphia, PA.

BAILEY, D. H., HIDA, Y., LI, X. S., AND THOMPSON, B. 2002. ARPREC: An arbitrary precision com-
putation package. Tech. rep. LBNL-53651. Lawrence Berkeley National Laboratory, Berkeley,
CA.

BALAY, S., GROPP, W., MCINNES, L., AND SMITH, B. 1997. Efficient management of parallelism in
object oriented numerical software libraries. In Modern Software Tools in Scientific Computing,
E. Arge, A. M. Bruaset, and H. P. Langtangen, Eds. Birkhauser Press, New York, NY, 163–
202.

BALAY, S., GROPP, W., MCINNES, L., AND SMITH, B. 1998a. PETSc 2.0 users manual. Tech. rep. ANL-
95/11—Revision 2.0.22. Argonne National Laboratory, Argonne, IL.

BALAY, S., GROPP, W., MCINNES, L., AND SMITH, B. 1998b. PETSc home page. Go online to http://

www.mcs.anl.gov/petsc.
BARTLETT, R. A., HEROUX, M. A., AND LONG, K. R. 2003. TSFCore 1.0: A package of light-weight

object-oriented abstractions for the development of abstract numerical algorithms and interfac-
ing to linear algebra libraries and applications. Tech. rep. SAND2003-1378. Sandia National
Laboratories, Albuquerque, NM.

BLACKFORD, L. S., CHOI, J., CLEARY, A., D’AZEVEDO, E., JEMMEL, J., DHILLON, I., DONGARRA, J.,
HAMMARLING, S., HENRY, G., PETITET, A., STANLEY, K., WALKER, D., AND WHALEY, R. C. 1997.
ScaLAPACK Users’ Guide. SIAM Press, Philadelphia, PA.

BOCHEV, P. B., GARASI, C., HU, J. J., ROBINSON, A. C., AND TUMINARO, R. S. 2003. An improved
algebraic multigrid method for solving Maxwell’s equations. SIAM J. Sci. Comput. 25, 2.

BOMAN, E., DEVINE, K., HEAPHY, R., HENDRICKSON, B., HEROUX, M., AND PREIS, R. 2004. Ldrd re-
port: Parallel repartitioning for optimal solver performance. Tech. rep. SAND2004-0365. Sandia
National Laboratories, Albuquerque, NM.

CARPENTER, B., GETOV, V., JUDD, G., SKJELLUM, A., AND FOX, G. 2000. MPJ: MPI-like message passing
for Java. Concurrency Computat.: Pract. Exper. 12, 11 (Sept.), 1019–1038.

DAVIS, T. 2003. UMFPACK home page. Go online to http://www.cise.ufl.edu/research/sparse/
umfpack.

DAVIS, T. AND STANLEY, K. 2004. Sparse lu factorization of circuit simulation matrices. Go online
to http://www.cise.ufl.edu/∼davis/techreports/KLU/pp04.pdf.

DAY, D. AND HEROUX, M. A. 2001. Solving complex-valued linear systems via equivalent real
formulations. SIAM J. Sci. Comput. 23, 2, 480–498.

DEVINE, K. D., HENDRICKSON, B. A., BOMAN, E. G., JOHN, M. M. S., AND VAUGHAN, C. 1999. Zoltan: A
dynamic load-balancing library for parallel applications—user’s guide. Tech. rep. SAND99-1377.
Sandia National Laboratories, Albuquerque, NM.

DONGARRA, J. J., BUNCH, J., MOLER, C., AND STEWART, G. 1979. LINPACK Users’ Guide. SIAM Press,
Philadelphia, CA.

DOOLIN, D. M., DONGARRA, J., AND SEYMOUR, K. 1998. Jlapack—compiling lapack Fortran to Java.
Go online to http://icl.cs.utk.edu/projects/f2j/f2jreport/f2jreport.html.

ELMAN, H., HOWLE, V. E., SHADID, J. N., AND TUMINARO, R. S. 2003. A parallel block multi-level
preconditioner for the 3d incompressible Navier-Stokes equations. J. Computat. Phys. 187, 2,
504–523.

FORUM, C. 2004. The common component architecture home page. Go online to http://www.

cca-forum.org.
FREE SOFTWARE FOUNDATION. 2004a. Autoconf home page. Go online to http://www.gnu.org/

software/autoconf.
FREE SOFTWARE FOUNDATION. 2004b. Automake home page. Go online to http://www.gnu.org/

software/automake.
FREE SOFTWARE FOUNDATION. 2004c. Gnu CVS home page. Go online to http://www.gnu.org/

software/cvs.

ACM Transactions on Mathematical Software, Vol. 31, No. 3, September 2005.

422 • M. A. Heroux et al.

FREE SOFTWARE FOUNDATION. 2004d. Gnu m4 home page. Go online to http://www.gnu.org/

software/m4.
FREE SOFTWARE FOUNDATION. 2004e. Gnu mailman home page. Go online to http://www.gnu.org/
software/mailman/mailman.html.

FREE SOFTWARE FOUNDATION. 2004f. Libtool home page. Go online to http://www.gnu.org/

software/libtool.
GAMMA, E., HELM, R., JOHNSON, R., AND VLISSIDES, J. 1994. Design Patterns, Elements of Reusable

Object Oriented Software. Addison-Wesley, Reading, MA.
GRANLUND, T. 2004. GNU MP: The GNU Multiple Precision Arithmetic Library, 4.1.3 ed. SWOX

AB, Stockholm, Sweden.
HEROUX, M. A. 2002. Epetra Reference Manual, 2.0 ed. Go online to http://software.sandia.

gov/trilinos/packages/epetra/doxygen/latex/EpetraReferenceManual.pdf.
HEROUX, M. A. 2004. Trilinos home page. Go online to http://software.sandia.gov/trilinos.

HEROUX, M. A., HOEKSTRA, R. J., AND WILLIAMS, A. B. 2004. An object model for parallel numerical
linear algebra computations. Tech. rep. Sandia National Laboratories, Albuquerque, NM. In
preparation.

HEROUX, M. A., WILLENBRING, J. M., AND HEAPHY, R. 2003. Trilinos Developers Guide Part II: ASCI
Software Quality Engineering Practices Version 1.0. Tech. rep. SAND2003-1899. Sandia National
Laboratories, Albuquerque, NM.

KAY, D., LOGHIN, D., AND WATHEN, A. 2002. A preconditioner for the steady-state navier-stokes
equations. SIAM J. Sci. Comput. 24, 1, 237–256.

KOLDA, T. G. AND PAWLOWSKI, R. P. 2004. Nox home page. Go online to http://software.sandia.

gov/nox.
KOTULSKI, J. D. 2004. Pliris home page. Go online to http://software.sandia.gov/Trilinos/

packages/pliris.
LI, X. AND DEMMEL, J. 2003. SuperLU home page. http://crd.lbl.gov/ xiaoye/SuperLU/.
MOREIRA, J. E., MIDKIFF, S. P., GUPTA, M., ARTIGAS, P. V., WU, P., AND ALMASI, G. 2001. The NINJA

project. Commun. ACM 44, 10 (Oct.), 102–109.
MYERS, N. C. 1995. Traits: A new and useful template technique. C++ Rep. 7, 5 (June), 32–35.
NELISSE, A., MAASSEN, J., KIELMANN, T., AND BAL, H. E. 2003. Ccj: Object-based message passing

and collective communication in Java. Concurrency Computat.: Pract. Exper. 15, 3–5, 341–369.
OLDHAM, J. D. 2002. POOMA: A C++ Toolkit for High-Performance Parallel Scientific Comput-

ing, 1.01 ed. CodeSourcery, LLC. Go online to http://www.codesourcery.com/public/pooma/

manual.pdf.
QUARLES, T., PEDERSON, D., NEWTON, R., SANGIOVANNI-VINCENTELLI, A., AND WAYNE, C. 2003. SPICE

home page. Go online to http://bwrc.eecs.berkeley.edu/Classes/IcBook/SPICE.
RAGHAVAN, P. 2003. DSCPACK home page. Go online to http://www.cse.psu.edu/∼raghavan/

Dscpack.
SALINGER, A. G., DEVINE, K. D., HENNIGAN, G. L., MOFFAT, H. K., HUTCHINSON, S. A., AND SHADID, J. N.

1996. MPSalsa: A finite element computer program for reacting flow problems, part 2—user’s
guide. Tech. rep. SAND96–2331. Sandia National Laboratories, Albuquerque, NM.

SALINGER, A. G., LEHOUCQ, R. B., PAWLOWSKI, R. P., AND SHADID, J. N. 2002. Computational bifurca-
tion and stability studies of the 8:1 thermal cavity problem. Internat. J. Numer. Meth. Fluids 40, 8,
1059–1073.

SHADID, J. N., MOFFAT, H. K., HUTCHINSON, S. A., HENNIGAN, G. L., DEVINE, K. D., AND SALINGER,
A. G. 1995. MPSalsa: A finite element computer program for reacting flow problems, part 1—
theoretical development. Tech. rep. SAND95–2752. Sandia National Laboratories, Albuquerque,
NM.

SILVESTER, D., ELMAN, H., KAY, D., AND WATHEN, A. 2001. Efficient preconditioning of the linearized
Navier-Stokes equations for incompressible flow. J. Comp. Appl. Math. 128, 261–279.

SMITH, B. T., BOYLE, J. M., DONGARRA, J. J., GARBOW, B. S., IKEBE, Y., KLEMA, V. C., AND MOLER, C. B.
1976. Matrix Eigensystem Routines—EISPACK Guide, 2nd ed. Lecture Notes in Computer
Science, vol. 6. Springer–Verlag, New York, NY.

SNIR, M., OTTO, S., HUSS-LEDERMAN, S., WALKER, D., AND DONGARRA, J. 1998. MPI—The Complete
Reference, Volume 1, MPI core. MIT Press, Cambridge, MA.

STROUSTRUP, B. 2000. The C++ Programming Language. Addison-Wesley, Reading, MA.

ACM Transactions on Mathematical Software, Vol. 31, No. 3, September 2005.

Overview of the Trilinos Project • 423

SUN MICROSYSTEMS. 2003. Java Native Interface. Go online to http://java.sun.com/products/

jdk/1.2/docs/guide/jni.
THE MOZILLA ORGANIZATION. 2004a. Mozilla bonsai home page. Go online to http://www.mozilla.
org/bonsai.html.

THE MOZILLA ORGANIZATION. 2004b. Mozilla Bugzilla home page. Go online to http://www.

mozilla.org/projects/bugzilla.
THORNQUIST, H., LEHOUCQ, R., AND HETMANIUK, U. 2004. Anasazi home page. Go online to http://

software.sandia.gov/Trilinos/packages/anasazi.
TONG, C. AND TUMINARO, R. 2000. ML2.0 smoothed aggregation user’s guide. Tech. rep. SAND2001-

8028. Sandia National Laboratories, Albuquerque, NM.
TUMINARO, R. S., HEROUX, M. A., HUTCHINSON, S. A., AND SHADID, J. N. 1999. Official Aztec User’s

Guide, Version 2.1. Sandia National Laboratories, Albuquerque, NM.
TUMINARO, R. S. AND HU, J. 2004. Ml home page. Go online to http://www.cs.sandia.

gov/∼tuminaro/ML Description.html.
VAN HEESCH, D. 2004. Doxygen home page. Go online to http://www.doxygen.org.
VANEK, P., BREZINA, M., AND MANDEL, J. 1998. Convergence of algebraic multigrid based on

smoothed aggregation. Tech. rep. 126, UCD/CCM. University of Colorado at Denver, Denver,
CO.

VANEK, P., MANDEL, J., AND BREZINA, M. 1996. Algebraic multigrid based on smoothed aggregation
for second and fourth order problems. Comput. 56, 179–196.

VAUGHAN, G., ELLISTON, B., TROMEY, T., AND TAYLOR, I. 2000. Gnu Autoconf, Automake, and Libtool.
New Riders, Berkeley, CA.

YEE, K. 1966. Numerical solution of initial boundary value problems involving Maxwell’s equa-
tions in isotropic media. IEEE Trans. Antenn. Propag. 16, 302–307.

ZEPPER, J., ARAGON, K., ELLIS, M., BYLE, K., AND EATON, D. 2003. Sandia National Laborato-
ries ASCI Applications Software Quality Engineering Practices, Version 2.0. Tech. rep., Sandia
National Laboratories, Albuquerque, NM.

Received September 2003; revised October 2004, November 2004; accepted December 2004

ACM Transactions on Mathematical Software, Vol. 31, No. 3, September 2005.

