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Abstract

Linear algebra is a powerful and proven tool in web
search. Techniques, such as the PageRank algorithm of Brin
and Page and the HITS algorithm of Kleinberg, score web
pages based on the principal eigenvector (or singular vec-
tor) of a particular non-negative matrix that captures the
hyperlink structure of the web graph. We propose and test
a new methodology that uses multilinear algebra to elicit
more information from a higher-order representation of the
hyperlink graph. We start by labeling the edges in our graph
with the anchor text of the hyperlinks so that the associ-
ated linear algebra representation is a sparse, three-way
tensor. The first two dimensions of the tensor represent the
web pages while the third dimension adds the anchor text.
We then use the rank-1 factors of a multilinear PARAFAC
tensor decomposition, which are akin to singular vectors of
the SVD, to automatically identify topics in the collection
along with the associated authoritative web pages.

1. Introduction

PageRank [6, 32], which underlies the Google and Ya-
hoo! search engines, and HITS [24] are two significant al-
gorithms for determining the importance of web pages. The
PageRank [6, 32] scores are given by the entries of the
principal eigenvector of a Markov matrix of page transition
probabilities across the entire web (see, e.g., [26] for a de-
tailed description of PageRank). Thus, PageRank is a global
score that depends only on the topology of the Web and
does not take page content or the query into account. Query
responses are compiled by combining the PageRank score
with other heuristics that ensure a good term match. Occa-
sionally, this can lead to peculiar query responses; for exam-
ple, the top site currently returned by Google for a search on
“tomatoes” is http://www.rottentomatoes.com,
a website that rates movies.

HITS [24], on the other hand, first compiles a focused
subgraph of the Web that is assumed to be “rich in relevant

pages.” The principal singular vectors of the adjacency ma-
trix of the focused subgraph define the best authorities and
hubs for the query. The HITS score is query-specific in that
it computes the authority scores of the pages after it com-
piles a subset of web pages. Unfortunately, Kleinberg [24]
and others [4, 10] have observed that the authorities and
hubs do not always match the original query due to “topic
drift,” i.e., nodes in the focused subgraph are not related to
the query topic. Appropriate authorities and hubs gener-
ally appear in some pair of singular vectors, but Davison et
al. [12] note that selecting the appropriate singular vectors
is an open research question.

Both PageRank [6, 32] and HITS [24] use appropriate
eigenvectors (or singular vectors) to compute the authority
of web pages and can be considered as members of the same
family [14]. Other methods adhere to the same basic theme.
For example, SALSA is a variant on HITS that uses a sto-
chastic iteration matrix [27].

In this paper, we propose a new method called Topical
Hypertext Induced Topic Selection (TOPHITS), following
Kleinberg [24]. This new technique analyzes a semantic
graph that combines anchor text with the hyperlink structure
of the web. Anchor text is useful for web search because it
behaves as a “consensus title” [18]. Fig. 1 shows four hy-
pothetical web pages and the corresponding semantic graph.
The adjacency structure of a semantic graph cannot be mod-
eled as a matrix without losing edge type information. In-
stead, it is modeled by a three-way tensor containing both
hyperlink and anchor text information; see Fig. 2. Then we
apply the Parallel Factors (PARAFAC) decomposition [22],
which is a higher-order analogue of the SVD, to get the most
significant factors that are akin to singular vectors. Instead
of pairs of vectors containing authority and hub scores, we
produce triplets of vectors with authority and hub scores for
the pages as well as topic scores for the terms. This is an ex-
tension of Kleinberg’s HITS algorithm [24], which uses the
singular vectors of the hyperlink matrix (a two-way tensor)
to produce multiple sets of hubs and authorities. The addi-
tion of the topic vector means that determining which set of
singular vectors contains the answer to the query is just a


http://csmr.ca.sandia.gov/~tgkolda/
http://www.cs.sandia.gov/~bwbader/
http://www.rottentomatoes.com

Endangered Species & “1--

Animals today are being threatened
by a variety of environmental

is losing prime habitat in the world.
Zoos are trying to raise awareness of 22 years at a zoo.
FEE e
“their plight. AR A .-

N 1 -

- -__ Jaguar FAQ

Jaguars are ;ﬁendangered species
that live in the tropical rain forests of
pressures. For example, the jaguar - - - - - - - - - - >»| Central and South America. They live
about 11 years in the wild*and up to

jaguar

Website 1 Website 2

endangered

AY
AY N
\ 200 species

N 1 =
’ N -

N

Y Rain Forest Zoo PR

We have a new exhibit opening next |4~

species of the Americas, including the Pid

aguar. ---------=->= Nl _ »| and Central America.

Online Atlas
N View maps of animal habitats from
month highlighting the endangered + ~_ | around the world, including those of
endangered animals in North, South,

America

Website 3 Website 4

Figure 1. The web pages on the left yield the semantic graph on the right. The edges of the graph

are labeled with the anchor text of the links.

1 ,-* 200

I .-~ America

= jaguar

— species

AW N =

—— endangered
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matter of looking at which topic vectors have a high score
for the query terms and then considering the corresponding
hubs and authorities. Like PageRank, TOPHITS is query-
independent because the computation of the significant vec-
tors can potentially be done in advance and off-line. This
approach incorporates ideas from Latent Semantic Analysis
(LSA) [17, 3, 16, 15], a popular method in text retrieval that
uses dimensionality reduction to improve search. LSA has
been used in many domains, including term suggestions for
online advertisers [20].

2. Related Work
2.1. Topic Drift

The problem of topic drift in HITS has been addressed by
using a weighted adjacency matrix that increases the likeli-
hood that the principal singular vectors relate to the query.
The Clever system [8, 9] uses the content of the anchors
and surrounding text to give more weight to those pages

that are linked using terms in the search query, while Bharat
and Henzinger [4] and Li et al. [28] incorporate weighting
based on the content of the web pages.

2.2. Incorporating Text Information

We are not the first to propose the simultaneous analysis
of hyperlink structure and anchor text or page content. Dili-
genti et al. [13] propose a modification of PageRank that
uses a topic classifier instead of the random surfer model.
Rafiei and Mendelzon [33] modify the page transition prob-
abilities for PageRank based on whether or not a term ap-
pears in the page. Further, they derive a propagation model
for HITS and adapt the same modification in that context.
Haveliwala [23] introduced a topic-sensitive PageRank that
pre-computes several PageRank vectors that are biased to-
wards particular topics. Richardson and Domingos [34]
propose a general model that incorporates a term-based rel-
evance function into PageRank. The relevance function can
be defined in many ways, such as defining it to be 1 for
any page that includes the term, and O otherwise. In an
approach that is very similar in spirit to ours, though dif-
ferent in the mathematical implementation, Cohn and Hof-
mann [11] combine probabilistic LSI (PLSI) and probabilis-
tic HITS (PHITS) so that terms and links rely on a common
set of underlying factors.

2.3. Our Contribution

Our contribution is the use of a PARAFAC decomposi-
tion [22] (also known as the Canonical Decomposition or
CANDECOMP decomposition [7]) on a three-way tensor
representing the web graph with anchor-text-labeled edges.
Tensor decompositions have a long history and have been
used in applications ranging from chemometrics [36] to im-
age analysis [39]. Recently, they have been applied to data-
centric problems including analysis of clickthrough data us-



ing an alternate decomposition known as Tucker [37], and
chatroom analysis comparing different tensor decomposi-
tions [1].

3. Problem Setting & Evaluation
3.1. HITS

We briefly review the HITS [24] method. Let n denote
the number of pages in our web (sub-)graph. Every page

has a hub score (h) and an authority score (a), which are
computed iteratively as follows:

h(f'H) Za for i =1,...,n, and
i—J
(1)
UH) Zh(tH) for j=1,...,n,
i—J

The iterates h and a are normalized after each iteration. In
words, the hub score of page i is equal to the sum of the au-
thority scores of all the pages to which it points; conversely,
the authority score of page ¢ is equal to the sum of the hub
scores of all pages that point to it.

Equivalently, these equations can be expressed in matrix
form. Let A denote the n xn adjacency matrix of our graph,

defined by
Ay — 1 ifi— ?,
0 otherwise,

where ¢ — j denotes that page ¢ links to page j. The equa-
tions in (1) become

ht+D = A a(t)7 and alttt) = AT h(t+1), 2)

Under appropriate conditions, these iterates converge to the
principal singular vectors of the adjacency matrix, cf. [21].

Recall that the first p factors of the singular value decom-
position (SVD) of A yield the best rank-p approximation,
assuming p < rank(A) [21]. Thus, we can approximate A

as
p

A= Z o u® o v, 3)
i=1

Here 0 > ¢(® > ... > ¢(®) > 0 are the first p singu-
lar values, and u® 0, and v( i) are the corresponding singular
vectors. The notation a o b denotes the vector outer product
so that (aob);; = a;b,. See Fig. 3 for an illustration of the

SVD.
As mentioned above, the iterates defined in (2) converge

to the principal singular vectors:
a® —a* = v,

h® — h* =u®  and

Furthermore, each pair {u?), v(¥)} identifies a set of related
authorities and hubs for the graph [24]. Our new method,
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Figure 3. In HITS model, the SVD provides a 2-
way decomposition that yields authority and
hub scores.

described in the next section, discovers triplets of vectors
that identify a topic (described by key terms) along with its
associated hubs and authorities.

3.2. TOPHITS

The TOPHITS method produces sets of triplets
{u® v w(®} where the u and v vectors contain hub
and authority scores for the web pages as in HITS, and the
w vector contains topic scores for the terms.

Just like HITS, these scores can be computed iteratively.
Let n denote the number of pages and m the number of
terms. The hub, authority, and topic scores are updated as
follows:

b =3 alltl for i=1,...,n,
i
al ™ Zh““ £ for j=1..m
ij
t,(fﬂ) = Za§t+1)h§t+l) for k=1,....m

k.
1—]

Here, the notation ¢ LA j means page ¢ links to page j with
anchor text k. As with HITS, we normalize after each it-
eration. In words, the hub score of page 7 is the sum of
authority scores for pages that ¢ points to multiplied by the
corresponding topic scores of the terms in the anchor text.
Similarly, the authority score of page j is the sum of hub
scores of all pages that point to 7 multiplied by the topic
scores of the corresponding terms in the anchor text. The
topic score of term k is the sum of hub scores for page i
multiplied by the authority scores for page j over all hyper-
links ¢ — j that involve term k in the anchor text.

This can be written in tensor form as follows. Let A
denote the n x n x m adjacency fensor of a web (sub-)graph,
defined by

1 if ¢ — j with anchor text k,
Ak =

0 otherwise.



Then the equations in (4) can be expressed as:
httD = A x5, a®) X3 t(t),
a(t+1) — A >—<1 h(t+1) >—<3 t(t)7 (5)
t0F) = A X h(tHD %y altth),
The notation A X; x indicates that the tensor A should be
multiplied by the vector x in dimension ¢. For example,
h=AXxsaXxst

says to multiply A by a in the second dimension and by t
in the third dimension. The result is

n m
hi = ZZAijkajtk fori = 1,...,71.
Jj=1k=1

(See [2] for more details on notation.) Under appropriate
conditions, these iterations will converge to the best rank-1
approximation of A.

In Section 4.3, we describe a method for computing a
PARAFAC decomposition [22] of A which yields a rank-p
approximation of a tensor A of the form

P
A ~ Z o@D u® o v® 6wl (6)

i=1
where a o b o ¢ indicated a three-way outer product so that

(aoboc)jr = a;bjc. Fig. 4 shows an illustration of the
PARAFAC decomposition.
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Figure 4. In TOPHITS, the PARAFAC model
provides a 3-way decomposition that yields
authority, hub, and topic scores.

Unlike the SVD, there is no guarantee that the rank-p
PARAFAC approximation will be optimal [25]. Further-
more, the PARAFAC vectors are not orthogonal; i.e., ul®
is not orthogonal to u?, as would be the case for the SVD.

However, the algorithm in Section 4.3, under suitable
conditions, computes the best rank-1 approximation of A
as the first factor so that

h® S h* =u®, a® 5 a* = v,

The largest entries in w(!) define the dominant topic terms
for the first factor, while the largest entries in the u(®) and
v(D) vectors define the dominant hubs and authorities for
the topic. Each factor of (6), i.e., {u®, v(® w(®}, yields
another topic and corresponding hubs and authorities.

t® - ¢ =w,

4. Methodology
4.1. The Data

We tested our technique on a subset of web data, gen-
erated using an in-house web crawler that includes anchor
text in its output. Stop words, punctuation, and non-integer
numbers were removed. Any hyperlink without anchor text
was assigned the term “no-anchor-text”. In order to avoid
the edge effects inherent in small web crawls, it was as-
sumed that URLs with no recorded outlinks were never
crawled and so were excluded from the data set. Finally,
we considered only host-to-host links (rather than page-to-
page links) and removed all self-links that point from one
host to the same host.

The three-way tensor is computed by counting the num-
ber of links from host ¢ to host j with term & and storing the
result as C;;;. We perform an element-wise scaling of C,
which attenuates the influence of highly linked hosts:

(M

A _ 1+ log(Cijk) if Cijkx 75 0,
ijk = .
0 otherwise.

4.2. Working with Sparse Tensors

Working with multi-way data is a challenge due to the
lack of available software. Although a few packages do
exist for working with dense tensors (see, e.g., [2]), noth-
ing is available for sparse tensors. Our web graph data is
extremely sparse. For example, storing a host graph with
10,000 hosts and 10,000 terms in a dense tensor storage
format would require one trillion entries, which rules out
any type of dense storage format. Thus, in order to work
with this data in sparse form, we developed the capability
to mathematically manipulate sparse, large-scale tensors.

We implemented our methods in MATLAB by extend-
ing our existing toolbox of dense tensor classes [2], details
of which will be in a forthcoming report. We have cre-
ated a sparse_tensor object (or class) in MATLAB that
stores the data in sparse format and can efficiently manip-
ulate it. We support multiplication, scaling, accumulation
across dimensions, operations on individual elements, and
permutations in addition to standard operations like adding,
subtracting, etc. For example, we have been able to run
the greedy PARAFAC algorithm (described in Section 4.3)
to work with data sets as large as 50,000 by 50,000 by
50,000 with 500,000 nonzeros on a laptop. In addition, to
the sparse_tensor class, we have a separate class for
storing a PARAFAC decomposition.

Efficiency is achieved by carefully selecting a storage
format and using built-in MATLAB functions to avoid any
loops. We use a coordinate-based storage scheme in which
each non-zero is stored along with its indices; e.g., we store



i, 7, k, and A;;. This proved to be more feasible than any
type of compressed format, as is often used for sparse matri-
ces, because tensor manipulations require indexing by each
dimension.

4.3. Algorithm

To determine the leading factors of our TOPHITS
method, we compute a low-rank, approximate PARAFAC
decomposition (6) of the sparse tensor A. As outlined
above, we use the iteration defined by (5), which is called
the higher-order power method [36], to compute the best
rank-1 tensor that minimizes the Frobenius norm of the dif-
ference from A. Computing an approximation to the best
rank-p decomposition is simply a matter of iterating on this
concept. To compute the kth rank-1 tensor, we apply the
higher-order method to the current residual:

k—1
RO = A=Y o u oy 0w,

i=1

We avoid computing the residual explicitly by instead com-
puting the products (e.g., R X1 x X5y) on each term in-
dividually. Thus, each iteration of the power method on
R®) involves three tensor-vector-vector products with A
and then 4(k — 1) vector inner products.

In: A ofsizen X n X m.

Out: Rank-p approximation of A, returned as p triplets
{u(”,v(l) , w(l)} plus weights o(9) fori =1, ..., p.
Fork=1,2,...,p,do:

Initialize x,y, z to be vectors of all ones of length n, n, m, resp.

Repeat:
k—1

Xx=AX2yX3z— Z o Mu® (yTv®)(zTw®)
i=1
k=1 . .
y=A >_<]_ X >_<3 Z — Z U(Z)V('L) (XTU(Z))(ZTW(Z))
i=1
k=1 ’ ’
z=AX|XXo y — Z g(l)w<l)(xTu(l))(yTV(z))
=1

A = |Ix|| [ly[l l|z]|. and normalize x, y, z

Until the change in A is small.
Setu® =x, v(F) =y, wk) =z, o(F) = )
End do.

Figure 5. Greedy PARAFAC Algorithm

The complete algorithm is in Fig. 5. We call this pro-
cedure the greedy PARAFAC decomposition because it cal-
culates a rank-1 factor to R(*) without considering changes
to the factors previously computed. An alternative method
employs a different alternating least squares approach that

simultaneously solves for all vectors in the same mode (e.g.,
all u(i)7 1 < ¢ < p) [36]. However, in our experiences,
such an approach is slow to converge and does not yield
any significant improvements in our results over the greedy
approach.

5. Results

We started our web crawler from the following URL:
http://www—neos.mcs.anl.gov/neos (an opti-
mization web page) and allowed it to crawl 4700 pages,
resulting in 560 cross-linked hosts.

Fig. 6 shows the authorities derived from the HITS ap-
proach [24], using the SVD applied to the standard adja-
cency matrix (i.e., A;; = 1if i — j). We show results from
the first several singular vectors, omitting negative entries
because they were repeats of earlier sets of authorities and
other sets that were also repeats (e.g., the fifth singular vec-
tor contained repeats from several of the first four vectors).

Using our greedy PARAFAC algorithm from Fig. 5 on
the tensor A defined by (7), we computed the first twenty
factors of the scaled adjacency tensor. The cost of each it-
eration is O(IN) where N is the number of nonzeros in the
tensor A. This is approximately the same cost of each iter-
ation of the power method for computing the SVD because
the number of nonzeros in the tensor representation is not
much more than that in the matrix representation. Fig. 7
shows that we only require a few iterations for each factor.

Figures 8 and 9 show sets of topics and authorities de-
rived from the TOPHITS approach. As before, we omit-
ted repetitive results. For each factor, we get a ranked
list of hosts that is associated with a ranked list of terms.
The results are very similar to what we get from HITS, but
TOPHITS includes terms that identify the topic of each set
of authorities. In the simplest case, this approach can be
used to correct the topic drift problem. Here, for exam-
ple, we collected pages about optimization as well as other
topics. It is easy to find the authorities on optimization by
simply searching for key terms (in this case, “optimization”
identifies the 12th factor).

The usefulness of this new TOPHITS approach is that
it automatically discovers topics along with sets of authori-
ties. This can be used to extend HITS so that it can be used
on large, multi-topic data sets.

6. Conclusions

Multi-way data representations and tensor decomposi-
tions are a novel technique for web search and related tasks.
We have introduced the TOPHITS algorithm, which ex-
tends HITS [24] by identifying hubs and authorities that
are associated with prominent topics. We accomplish this
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SCORE |

HosT

Ist Singular Vector

0.97
0.24
0.08
0.05
0.02

www.ibm.com
www.alphaworks.ibm.com
www—128.1ibm.com
www.developer.ibm.com
www.research.ibm.com

2nd Singular Vector

0.99
0.11
0.06
0.06

www.lehigh.edu
www2.lehigh.edu
www.lehighalumni.com
www.lehighsports.com

3rd Singular Vector

0.75
0.38
0.36
0.24
0.16
0.13
0.12
0.08
0.08
0.08

java.sun.com

WWW . SUn.com
developers.sun.com
see.sun.com
WWW.samag.com
docs.sun.com
blogs.sun.com
sunsolve.sun.com
www.sun-catalogue.com
news.com.com

4th Singular Vector

0.60
0.45
0.35
0.31
0.22
0.20
0.16
0.14
0.13
0.13

www.pueblo.gsa.gov
www.whitehouse.gov
wWWw.l1lrs.gov
travel.state.gov
WWW.gsa.gov
WWW.SSa.gov
WWW.CEensus.gov
www.govbenefits.gov
www.kids.gov
www.usdoj.gov

6th Singular Vector

0.97
0.18
0.17
0.04
0.03

mathpost.asu.edu
math.la.asu.edu
www.asu.edu
www.act.org
WWW.eas.asu.edu

Figure 6. HITS results

Iterations
- o )
o (&) o

o

Figure 7. Number of power method iterations
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Topics Authorities
SCORE | TERM SCORE [ HOST
1st Principal Factor
0.23 | java 0.86 | java.sun.com
0.18 | sun 0.38 | developers.sun.com
0.17 | platform 0.16 | docs.sun.com
0.16 | solaris 0.14 | see.sun.com
0.16 | developer 0.14 | www.sun.com
0.15 | edition 0.09 | www.samag.com
0.15 | download 0.07 | developer.sun.com
0.14 | info 0.06 | sunsolve.sun.com
0.12 | software 0.05 | accessl.sun.com
0.05 | iforce.sun.com
2nd Principal Factor
0.20 | no-anchor-text 0.99 | www.lehigh.edu
0.16 | faculty 0.06 | www2.lehigh.edu
0.16 | search 0.03 | www.lehighalumni.com
0.16 | news
0.16 | libraries
0.16 | computing
0.12 | lehigh
3rd Principal Factor
0.15 | no-anchor-text 097 | www.ibm.com
0.15 | ibm 0.18 | www.alphaworks.ibm.com
0.12 | services 0.07 | www-128.1ibm.com
0.12 | websphere 0.05 | www.developer.ibm.com
0.12 | web 0.02 | www.redbooks.ibm.com
0.11 | developerworks || 0.0l | www.research.ibm.com
0.11 | linux
0.11 resources
0.11 | technologies
0.10 | downloads
4th Principal Factor
0.26 | information 0.87 | www.pueblo.gsa.gov
0.24 | federal 0.24 | www.irs.gov
0.23 | citizen 0.23 | www.whitehouse.gov
0.22 | other 0.19 | travel.state.gov
0.19 | center 0.18 | www.gsa.gov
0.19 | languages 0.09 | www.consumer.gov
0.15 |us 0.09 | www.kids.gov
0.15 | publications 0.07 | www.ssa.gov
0.14 | consumer 0.05 | www.forms.gov
0.13 | free 0.04 | www.govbenefits.gov
6th Principal Factor
0.26 | president 0.87 | www.whitehouse.gov
0.25 | no-anchor-text 0.18 | www.irs.gov
0.25 | bush 0.16 | travel.state.gov
0.25 | welcome 0.10 | www.gsa.gov
0.17 | white 0.08 | www.ssa.gov
0.16 |us
0.15 | house
0.13 | budget
0.13 | presidents
0.11 | office

Figure 8. TOPHITS results
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Topics Authorities

SCORE [ TERM SCORE [ HosT

12th Principal Factor

0.75 | optimization 0.35 | www.palisade.com

0.58 | software 0.35 | www.solver.com

0.08 | decision 0.33 |plato.la.asu.edu

0.07 | neos 0.29 |www.mat.univie.ac.at

0.06 | tree 0.28 |www.ilog.com

0.05 | guide 0.26 | www.dashoptimization.com
0.05 | search 0.26 |www.grabitech.com

0.05 | engine 0.25 |www-fp.mcs.anl.gov

0.05 | control 0.22 | www.spyderopts.com

0.05 |ilog 0.17 | www.mosek.com

13th Principal Factor

0.46 | adobe 0.99 | www.adobe.com
0.45 | reader
0.45 | acrobat
0.30 | free
0.30 | no-anchor-text
0.29 | here
0.29 | copy

16th Principal Factor
0.50 | weather 0.81 |www.weather.gov
0.24 | office 0.41 | www.spc.noaa.gov
0.23 | center 0.30 | lwf.ncdc.noaa.gov
0.19 | no-anchor-text 0.15 |www.cpc.ncep.noaa.gov
0.17 | organization 0.14 | www.nhc.noaa.gov
0.15 | nws 0.09 | www.prh.noaa.gov
0.15 | severe 0.07 | aviationweather.gov
0.15 | fire 0.06 | www.nohrsc.nws.gov
0.15 | policy 0.06 |www.srh.noaa.gov
0.14 | climate 0.05 |news.google.com

19th Principal Factor

0.22 | tax 0.73 |www.irs.gov

0.17 | taxes 043 |travel.state.gov
0.15 | child 0.22 | www.ssa.gov

0.15 | retirement 0.08 |www.govbenefits.gov
0.14 | benefits 0.06 |www.usdoj.gov

0.14 | state

0.14 | income
0.13 | service

0.13 | revenue
0.12 | credit

Figure 9. More TOPHITS results

with a three-way PARAFAC decomposition [22] of the web
graph, which provides more information than the two-way
SVD used in HITS.

Further differences with HITS are apparent. TOPHITS is
not restricted to focused subgraphs. If multiple topics exist
in the graph, users can find the appropriate cluster by look-
ing for the topic vectors in which their query terms have
a high score. For example, if the vector q represents the
query, then q”'w(? is a measure of the importance of the ith
factor to the query. This basic premise can be used poten-
tially to extend TOPHITS to a query-based system. For in-
stance, a query-dependent authority score of all web pages,

a, could be computed as

(qTW(i)) v(@®
1

P
a=

There are many directions for future research. Currently,
we are studying an alternative decomposition to PARAFAC
called the Tucker model [38] for applications in information
retrieval. We are also looking at even higher order data sets
that go beyond three-way models.

Although some accelerations have been proposed (see,
e.g., [40]), much work remains to be done on efficient com-
putation of PARAFAC models for large-scale, sparse ten-
sors. As a first step we have created a MATLAB toolbox
for working with sparse tensors that can efficiently handle
up to one million nonzeros. Extending these techniques to
data sets the size of the Web is a topic of future study. While
multiple vectors need to be stored, they can be sparsified,
which will reduce both the overall storage cost as well as
the computational cost for computing them. Further, con-
vergence and stability analysis of TOPHITS should be ana-
lyzed in the same way that Ng et al. [30, 31] have analyzed
the stability of PageRank and HITS.

Another future topic is the use of tensor decompositions
on semantic graphs to measure similarity, analogous to how
Blondel et al. use the SVD to measure the similarity be-
tween directed graphs [5]. Such techniques can be used
in attribute prediction as has already been done using ma-
trix decompositions [35] as well as probabilistic-based ap-
proaches [19, 29].
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