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Abstract

Modern applications such as Internet traffic,
telecommunication records, and large-scale social net-
works generate massive amounts of data with multi-
ple aspects and high dimensionalities. Tensors (i.e.,
multi-way arrays) provide a natural representation for
such data. Consequently, tensor decompositions such
as Tucker become important tools for summarization
and analysis.

One major challenge is how to deal with high-
dimensional, sparse data. In other words, how do we
compute decompositions of tensors where most of the
entries of the tensor are zero. Specialized techniques
are needed for computing the Tucker decompositions
for sparse tensors because standard algorithms do not
account for the sparsity of the data. As a result, a sur-
prising phenomenon is observed by practitioners: De-
spite the fact that there is enough memory to store
both the input tensors and the factorized output tensors,
memory overflows occur during the tensor factorization
process. To address this intermediate blowup problem,
we propose Memory-Efficient Tucker (MET). Based on
the available memory, MET adaptively selects the right
execution strategy during the decomposition. We pro-
vide quantitative and qualitative evaluation of MET on
real tensors. It achieves over 1000X space reduction
without sacrificing speed; it also allows us to work with
much larger tensors that were too big to handle before.
Finally, we demonstrate a data mining case-study us-
ing MET.

1 Introduction

Many applications generate large amounts high di-
mensional data with multiple aspects, which are natu-
rally represented as tensors, or multi-arrays. Some ex-
amples include (a) email exchanges, (b) bibliographic
data, (c) hyperlinks on the web, and (d) Internet net-
work traffic flows. These examples can be naturally
represented as tensors as follows: (a) can be modeled

as a 4D array, or a fourth-order tensor, with sender,
recipeient, keyword, and datestamp as the four modes;
(b) can viewed as a author-conference-keyword third-
order tensor [19]; (c) hyperlinks on the web yield a
third-order tensor of sources by desinations by anchor
text [15]; and (d) network traffic is a fourth-order ten-
sor with source IP, destination IP, port number, and
time [18, 19].

Beyond being multi-aspect and high-dimensional,
another key characteristic associated with these exam-
ples is sparsity, meaning that most of entries in the ten-
sor are zeros. Sparsity is a common property in tensor
data, e.g., Table 1 illustrates the density of datasets
used in this paper. Therefore, it is much more efficient
to store the nonzeros only; in fact, very large sparse
tensors can be stored using only moderate hardware.
For example, a 10K-by-10K-by-10K tensor with 1 mil-
lion nonzeros out of 1 trillion elements can be formed
in a personal laptop with only 32MB memory1. How-
ever, the challenge is, given a large sparse tensor, how
can it be efficiently analyzed with fixed memory?

Name Enron DBLP Web Network
density .0025% .0187% .0008% .0286%

Table 1. Sparsity in the real datasets

To analyze such tensor data, various tensor decom-
positions are proposed in the literature (see [14]). The
Tucker decomposition [21] is has been applied in many
different domains such as web search mining [20], net-
work forensics [19] and social network [8] (see Section 6
for an overview).

Despite its popularity, how to apply Tucker on a
large sparse tensor is still an open problem. One sur-
prising phenomenon is observed by practitioners: De-
spite that both the input (huge, sparse) tensor and the
output (small, dense, factorized) tensor can be stored
in memory, memory overflows may occur during the

1This is measured in the Tensor Toolbox using the sparse
tensor object [5].
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Tucker decomposition process. We call this the inter-
mediate blowup problem. Due to this problem, up to
now most of work on Tucker has been focused on rel-
atively small tensors (e.g., of the order of 100-by-100-
by-100 or smaller).

To address the intermediate blowup problem, we
propose a Memory-Efficient Tucker decomposition
(MET), which maximizes the computation speed while
optimally utilizing the available memory. MET avoids
constructing large intermediate results by handling the
computation in a piecemeal fashion, adaptively select-
ing the order of operations. Not only does MET elimi-
nate the intermediate blowup problem, it also achieves
significant memory savings without any loss of accu-
racy. In many cases, this can be done without compro-
mising on speed and is sometimes even faster. For ex-
ample, Figure 1 is an example comparison on 100K-by-
100K-by-100K random tensor with 1M nonzeros. Our
proposed method MET yields a 1000X saving on mem-
ory and is twice as fast as the standard Tucker.
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Figure 1. Comparison of Tucker versus MET on a
10K-by-10K-by-10K tensor with 1M nonzeros

In summary, the contributions of this paper are as
follows.

• We demonstrate the severity of the intermedi-
ate blowup problem in Tucker decomposition for
sparse tensors;

• we propose an adaptive algorithm called MET for
computing the Tucker decomposition for sparse
tensors; and

• we introduce a novel heuristics to prioritize the
computation across tensor modes in order to re-
duce memory consumption.

2 Background

In this section, we introduce the notation, define the
key tensor operations required in this paper. All the
definitions presented here come from [14].

2.1 Tensor

Definition 2.1 (Tensor) A tensor is a multi-way ar-
ray. The order of a tensor is the number of dimensions,
also known as ways or modes.

Higher-order (N -way with N ≥ 3) tensors are de-
noted by boldface Euler script letters, e.g., X. Ma-
trices (tensors of order two) are denoted by boldface
capital letters, e.g., A; vectors (tensors of order one)
are denoted by boldface lowercase letters, e.g., a; and
scalars are denoted by lowercase letters, e.g., a. The
ith entry of a vector a is denoted by ai, element (i, j)
of a matrix A by aij , and element (i, j, k) element of
a third-order tensor X by xijk. Indices typically range
from 1 to their capital version, e.g., i = 1, . . . , I. The
nth element in a sequence is denoted by a superscript
in parentheses. For example, v(n) denotes the nth vec-
tor in a sequence and v

(n)
i denotes the ith element on

the nth vector v(n). Likewise, A(n) denotes the nth
matrix in a sequence and a(n)

r denotes the rth column
of the matrix A(n).

Definition 2.2 (Norm of a Tensor) The norm of
an N -way tensor X ∈ RI1×I2×···×IN is

‖X‖ =

√√√√ I1∑
i1=1

I2∑
i2=1

· · ·
IN∑

iN=1

x2
i1i2···iN

.

Definition 2.3 (Tensor Fiber) A tensor fiber is a
one-dimensional fragment of a tensor, obtained by fix-
ing all indices but one.

Tensor fibers are the higher-order analogue of matrix
rows and columns. Third-order tensors have column,
row, and tube fibers, denoted by x:jk, xi:k, and xij:,
respectively.

Definition 2.4 (Tensor Slice) A tensor slice is a
two-dimensional fragment of a tensor, obtained by fix-
ing all indices but two.

For example, the horizontal, lateral, and frontal
slides of a third-order tensor X are denoted by Xi::,
X:j:, and X::k, respectively.

2.2 Basic Tensor Operations

Definition 2.5 (Matricization) Matricization, also
known as unfolding or flattening, is the process of re-
ordering the elements of an N -way array into a matrix.
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Definition 2.6 (Mode-n matrix product) The n-
mode matrix product of a tensor X ∈ RI1×I2×···×IN

with a matrix U ∈ RJ×In is denoted by X×n U and is
of size I1×· · ·×In−1×J×In+1×· · ·×IN . Element-wise,
we have

(X×n U)i1···in−1j in+1···iN
=

In∑
in=1

xi1i2···iN
ujin .

Multiple mode-n matrix products can be performed in
any order (see, e.g., [13]), i.e.,

(X×n A)×m B = (X×m B)×n A

for m 6= n. From [4], we adopt the following shorthand
notation for multiplication in every mode:

X× {A} ≡ X×1 A(1) ×2 A(2) · · · ×N A(N),

and for multiplication in every mode but one:

X×−n {A} ≡
X×1 A(1) · · · ×n−1 A(n−1) ×n+1 A(n+1) · · · ×M A(M).

Definition 2.7 (Mode-n vector product) The n-
mode vector product of a tensor X ∈ RI1×I2×···×IN

with a vector v ∈ RIn is denoted by X ×̄n v and is of
size I1 × · · · × In−1 × In+1 × · · · × IN . Element-wise,
we have

(X ×̄n v)i1···in−1in+1···iN
=

In∑
in=1

xi1i2···iN
vin .

Note that the order of the result is reduced by one.
Multiplying a three-way tensor by a vector in one mode
results in a two-way tensor (a matrix). It is possible to
multiple a tensor by a vector in more than one mode
as well. Multiplying a three-way tensor by vectors in
two modes results in a one-way tensor (a vector); mul-
tiplying in all modes results in a scalar.

2.3 Tensor Decompositions

Many tensor decompositions have been proposed
(see [14] for a detailed survey), among which, CAN-
DECOMP/PARAFAC (CP) [7, 11] and Tucker decom-
position [21] are the two most popular. Here we focus
on the Tucker decomposition.

Definition 2.8 (Tucker Decomposition) Let X be
a tensor of size I1 × I2 × · · · × IN . A Tucker decom-
position of X yields a core tensor G of specified size
J1 × J2 × · · · × JN and factor matrices A(n) of size
In × Jn for n = 1, . . . , N such that

X ≈ G× {A}. (1)

The Tucker decomposition approximates a tensor as
a smaller core tensor (i.e., a compressed version of the
original tensor) times the product of matrices that span
appropriate subspaces in each mode. Typically, the
factor matrices A(n) are assumed to be orthogonal.

3 Tensor storage and access

There are many options for storing sparse tensors.
Here, we use coordinate format as proposed in [6]. As-
sume X is a sparse tensor of size I1×I2×· · ·×IN with
P = nnz(X) non-zeros. We store the tensor as

v ∈ RP and S ∈ NP×N .

Here, the pth nonzero value is given by vp and its sub-
script is given by the pth row of S, i.e., sp:. In other
words,

xsp1,sp2,...,spN
= vp.

The total storage for a sparse tensor with P non-zeros is
the (N+1)P elements. This is the format implemented
in the MATLAB Tensor Toolbox, version 2.0 [5], which
is the framework in which we do all our testing.

Here, we summarize the main point. Let X be an
N -way tensor of size I1 × I2 × · · · × IN and assume
that we are doing mode-n vector products in the modes
specified by

M = {n1, . . . , nM} ⊆ {1, . . . , N}.

It is possible to calculate

Z = X ×̄n1 v(n1) · · · ×̄nM
v(nM ),

using only P additional memory elements and the stor-
age required for Z, which is

max{
∏

n 6∈M

In, 1}.

This calculation can be done with O(nnz(X)) memory
and is described in detail in [6].

4 MET: Memory-Efficient Tucker De-
composition

We are interested in the case where X is a large,
sparse tensor and we wish to find a Tucker approxi-
mation as in Equation (1) such that the (dense) core
tensor G has much smaller dimensions than the original
sparse tensor X; in other words, we assume

Jn � In for all n = 1, . . . , N.
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Moreover, we assume that the dimensions Jn are small
enough that the dense tensor G (with

∏
Jn elements)

can easily fit in memory.
In fitting Tucker, the goal is to find a core tensor G

of specified size J1 × J2 × · · · × JN and factor matrices
A(n) of size In × Jn for n = 1, . . . , N that minimize:

min
G,A(1),...,A(N)

‖ X− G× {A} ‖2. (2)

The core tensor G is determined uniquely by the
factor matrices. That is, given a fixed set of factor
matrices, the optimal core is

G = X× {AT}. (3)

Here we assume {A} is orthogonal.
The naive way of computing the error e =

‖X− G× {A} ‖2 is very expensive, since X−G×{A}
is a large dense tensor. Fortunately, it can be simplified
as the follows:

e = ‖X− G× {A} ‖2

= ‖X ‖2 + ‖G ‖2 − 2〈X,G× {A} 〉

= ‖X ‖2 + ‖G ‖2 − 2〈X× {AT},G 〉

= ‖X ‖2 − ‖G ‖2

Through the above transformation, the objective func-
tion in Equation (2) can be rewritten as ‖X‖2 − ‖G‖2.

Since ‖X‖ is fixed, Equation (2) is equivalent to

max
A(1),...,A(N)

‖ X× {AT} ‖. (4)

A common approach for solving Equation (4) is to
use an alternating least squares (ALS) method, solving
for one factor matrix at a time while holding the others
fixed. In other words, we fix all the factor matrices
except A(n) and solve

max
A(n)

‖ X× {AT} ‖. (5)

Setting
Y = X×−n {AT}, (6)

Equation (5) can be rewritten as

max
A(n)
‖A(n)TY(n)‖,

which is solved via the SVD of Y(n). See [9, 13] for
details.

This full Tucker-ALS algorithm is shown in Algo-
rithm 1. The initialization procedure is standard (see
[14] and reference therein). Note that the first factor
matrix does not need to be initialized since it is the

one solved for in the first inner iteration. The problem
boils down to calculating the leading singular vectors
of a large, sparse matrix, which is straightforward. We
discuss the inner loops in more detail below. Also ob-
serve that G, calculated once per outer loop, is calcu-
lated using the Y from the last inner iteration. This is
straightforward to compute, as is its norm.

Algorithm 1 Tucker-ALS for N-mode tensors

in: Tensor X of size I1 × I2 × · · · × IN .
in: Desired core size: J1 × J2 × · · · × JN .
for n = 2, . . . , N do {initialize factor matrices}

A(n) ← Jn leading left singular vectors of X(n).
5: end for

repeat {outer loop}
for n = 1, . . . , N do {inner loop}

Y← X×−n {AT}.
A(n)←Jn leading left singular vecs. of Y(n).

10: end for
G← Y×N A(N) (= X× {A}).

until ‖G‖ ceases to increase or the maximum num-
ber of outer iterations is exceeded.
out: Core tensor G of size J1 × J2 × · · · × JN and
orthogonal factor matrices A(n) of size In × Jn for
n = 1, . . . , N .

The bottleneck in this method is in the inner loop in
the calculation of Y; see Equation (6). Here we need to
compute the product of a sparse tensor times a series
of dense matrices. However, the intermediate products
are dense and may be too large to fit in memory even
if the final tensor Y does fit. We assume that there
is enough memory to fit Y, i.e., that there is enough
memory to store

max
n

In

∏
m6=n

Jm


elements and focus entirely on the problem of how to
compute Y. Once Y is obtained, finding its leading left
singular vectors is straightforward.

4.1 Three-way tensors

To simplify the discussion, we first focus on the prob-
lem of calculating Y in Equation (6) for N = 3. Con-
sider the following calculation (the size of each object
is listed above it), which we encounter in the first inner
iteration:

I1×J2×J3

Y =
I1×I2×I3

X ×2

J2×I2

A(2) ×3

J3×I3

A(3) . (7)
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We assume that I1, I2, I3 are relatively large and
J1, J2, J3 are relatively small; e.g., In = 1000 and
Jn = 10 for n = 1, 2, 3.

MET(0): Standard calculation (no modes
element-wise) The standard way to calculate Equa-
tion (7) in Tucker-ALS is as follows, where the brackets
indicate the order of operations:

Y =

I1×J2×J3︷ ︸︸ ︷
I1×I2×J3︷ ︸︸ ︷(

X×3 A(3)
)
×2A(2)


The first intermediate result,

X×3 A(3)

is a dense tensor of size I1× I2× J3 and may easily be
too big to fit in memory. Depending on the amount of
memory available, there are two alternatives for calcu-
lating Y with less memory.

MET(1): Slice updates (one mode element-
wise). We can calculate Y from Equation (7) one slice
at a time using less memory. Specifically, we handle
the third mode element-wise and have

Y::j3 =

I1×J2︷ ︸︸ ︷
I1×I2︷ ︸︸ ︷(

X ×̄3 a(3)
j3

)
×2A(2)

 for j3 = 1, . . . , J3,

(8)
where a(3)

j3
is the j3-th column of A(3). Here, the largest

intermediate result is a matrix of size I1 × I2 and we
need to do J3 calculations. Of course, it is possible to
instead handle the second mode element-wise:

Y:j2: =

I1×J3︷ ︸︸ ︷
I1×I3︷ ︸︸ ︷(

X ×̄2 a(2)
j2

)
×3A(3)

 for j2 = 1, . . . , J2.

(9)
MET(2): Fiber updates (two modes element-

wise). We can calculate Y from Equation (7) one
fiber at a time with even less memory. Specifically,
two modes are handled element-wise:

y:j2j3 =

I1︷ ︸︸ ︷
X ×̄2 a(2)

j2
×̄3 a(3)

j3

for j2 = 1, . . . , J2, j3 = 1, . . . , J3.

Here the largest intermediate result is a vector of size
I1 and we need to do J2J3 calculations.

4.2 N-way tensors

To generalize to the N -way case, two questions need
to be answered:

• Given fixed memory, how can we quickly compute

Y = X×−n {A}?

• Which modes should be treated element-wise?

Memory-Efficient Tensor Times Matrices
(METTM): Assume that we know which subset
modes should be treated element-wise, denoted by

E ⊆ {1, . . . , N} \ {n}.

Then the order of the intermediate sub-tensors that
are formed is N − |E|. For example, if N = 4 and
E = {3, 4}, then the intermediate results are two-way
tensors (matrices). Moreover, if E is non-empty, the
size of the largest intermediate result is∏

m6∈E

Im,

and the number of element-wise calculations that needs
to be performed is ∏

m∈E

Jm.

Selecting the modes to handle element-wise:
There is some choice in which modes to handle element-
wise. For example, trivially we can minimize the mem-
ory by having all modes handled element-wise, i.e.,
E = {1, 2, . . . , N}. The other extreme, which standard
Tucker-ALS uses, is to have empty E, leading to the
intermediate blow-up problem for large-scale tensors.

In order to balance the number of computations and
the size of the intermediate result, we consider the re-
duction ratios defined as

Km ≡
Im

Jm
for m ∈ {1, . . . , N} \ {n}.

Those modes with the largest values for Km are han-
dled element-wise. For example, if N = 3 and |E| = 1,
we would choose Equation (8) if J3/I3 > J2/I2 and
Equation (9) otherwise. The intuition is that the ma-
trix A(m) with large Km typically has two nice proper-
ties: 1) fewer columns (Jm is small) need to be handled
element-wise, which implies fast computation; and 2)
more elements in a single column, which implies big
space reduction on tensor size when multiplying this
matrix.

How many modes are handled element-wise depends
on the available memory. Typically, we will choose the
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minimal number of modes in E that guarantees that
the memory does not overflow. Given the order based
on reduction ratio, this selection can be done easily.

In summary, we have implemented a general-
purpose function for this calculation in which the only
parameter is the available memory and all the others
are handled automatically. Algorithm 2 illustrates the
pseudo-code.

Algorithm 2 MET for N-mode tensor

in: Tensor X of size I1 × I2 × · · · × IN .
in: Desired core size: J1 × J2 × · · · × JN .
in: Available memory M
initialize A(n), for n = 1 to N .

5: repeat {outer loop}
for n = 1, . . . , N do {inner loop}

Y← METTM(X, {A(i)T}i 6=n).
A(n) ← Jn leading left singular vecs. of Y(n).

end for
10: G← Y×N A(N).

until ‖G‖ ceases to increase or the maximum num-
ber of outer iterations is exceeded.
out: Core tensor G of size J1 × J2 × · · · × JN and
orthogonal factor matrices A(n) of size In × Jn for
n = 1, . . . , N .

5 Experiment Evaluation

Now we evaluate our method on a number of large
sparse tensors. First, we study their performance on
synthetic tensors that we generate by varying several
data dependent parameters. Second, we report the re-
sults on various of real tensors. We consider three per-
formance metrics:

• Intermediate space consumption is the mem-
ory needed for storing the intermediate results in
the computation. This determines the scale of the
problems that we can solve.

• CPU time is the execution elapsed time of the
computation. This determines how efficient we
can solve the problem.

• Relative error quantifies the quality of the
tensor decomposition. It is computed as
‖T −X ‖2 / ‖X ‖2 where X is the input tensor,
and T the factorized result from Tucker.

All experiments are performed using MATLAB 2007b
with the Tensor Toolbox [4, 6, 5] on a workstation with
Intel Xeon 3GHz processor and 16GB RAM. For both
Tucker-ALS and MET, we set the maximum number

of iterations to 50 and the threshold for the change in
‖G ‖ to 1e-4.

5.1 Tucker on synthetic data

To understand how different tensor properties affect
the memory and speed, we test MET on a set of low-
rank sparse tensors by varying different parameters.
There are four sets of data dependent parameters:

• Density D is the percentage of nonzero elements
in the tensor, e.g., Enron dataset has the density
.0025%.

• Mode N is the number of modes or ways in the
tensors, e.g., Enron dataset has 4 modes.

• Dimensionality I is the size on a mode, e.g.,
the dimensionality on mode 1 of Enron dataset is
1,000.

• core size J is the dimensionality in the core ten-
sor.

Given parameters D, N , I, and J , we first construct
a random core tensor of size J × · · · × J︸ ︷︷ ︸

N times

and N random

matrices A(1) . . .A(N) of size I × J ; we then construct
the full tensor X = G × {A}; finally we keep only the
top D percent of large elements in X to construct a
sparse tensor. Note that this data generation operation
is not memory-efficient, since it requires formatting the
full tensor and sorting all the elements. Because of this,
the synthetic tensors are smaller than the real tensor
datasets we experimented with.

To acquire deeper insights into Tucker, we first
present how the space consumption and computational
time vary when varying different data-dependent pa-
rameters. Note that in all cases, the relative error is
extremely small and consistent across all methods (the
error varies from 1e−9 to 1e−19), so we omitted that
part in the paper. Here we compare four variants of
Tucker as described in Section 4. Figure 2-5 shows the
space and time (y-axis) when varying each parameter
while setting the other ones to default values. All fig-
ures plot the y-axis in the logarithm scale (base 10).

Density: Figure 2 shows space and time (y-axis)
versus density (x-axis). Compared to the standard
Tucker-ALS, MET achieves a 100X to 1,000X space re-
duction. As the density drops, the gap between Tucker-
ALS and MET becomes bigger. CPU times are com-
parable between MET and Tucker-ALS, except for the
high density one, where MET takes much longer than
Tucker-ALS. The rule of thumb is if the tensor is sparse,
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(a) space consumption (b) CPU time

Figure 2. Varying tensor density: mode N = 3, di-
mensionality n = 500, core size 103

(a) space consumption (b) CPU time

Figure 3. Varying tensor modes: density .001%, di-
mensionality n = 500, core size 103

MET can perform almost as fast as Tucker-ALS but
needs much less memory.

Mode: In Figure 3, space and time increase with
the number of modes of the tensor. In all cases,
MET require much less space while taking compara-
ble time to Tucker-ALS. It is interesting to see that for
the mode-5 tensor, Tucker-ALS is actually slower than
MET. Note that the per-element CPU time is actually
sub-linear in the number of modes.

Dimensionality: In Figure 4, space and time in-
crease with the dimensionality of the tensor. Again
MET outperforms Tucker-ALS significantly in space,
and achieves that with comparable CPU-time.

core size: Similarly, in Figure 5, as we increase the
result size (core tensor size), both space consumption
and CPU time increase. It may be hard to notice the
upward trend in Figure 5(a), since the y-axis is in log-
arithm scale. But actually, the increase for both space
and time are proportional in this case. Again, MET is
the best in all cases.

5.2 Performance on real data

5.2.1 Description

We select a diverse set of data from different domains
including Email communication (Enron), bibliography

(a) space consumption (b) CPU time

Figure 4. Varying tensor dimensionality: density
.001%, mode N = 3, core size 103

(a) space consumption (b) CPU time

Figure 5. Varying core size:density .001%, mode
N = 3, dimensionality n = 500

data (DBLP), web links (Web), and network flow traffic
(Network).

The Enron dataset comprises 4 modes:
sender, recipient, date, and keyword, with size
1K×1K×1.1K×200 and over 5.39 million nonzero
entries. We select the top 1000 users and the 200 most
frequent keywords (after simple stop-word removal and
stemming) from the email messages of 1,126 days in
the Enron MYSQL database [22]. The element (i,j,k,l)
is 1 if there exists an email that is sent from sender i to
recipient j with keyword k on day l; otherwise, it is 0.
Note that the tensor is very sparse with only .0025%
nonzeros out of all 220 billion potential elements.

The DBLP dataset comprises 3 modes: author,
date, and keyword, with size 5K×1K×1K and 0.5 mil-
lion nonzero entries, which is constructed using a sim-
ilar procedure to the Enron dataset. By parsing the
DBLP XML file [23], we select the 5000 most prolific
authors, the 1000 most common keywords, and the
1000 must popular conferences up to 2005. Each el-
ement in the tensor is the corresponding paper count.
Again the tensor is very sparse with .0536% nonzeros
out of 1 billion potential elements.

The web dataset comprises 3 modes: source
URL, outgoing URL and anchor text, with size
5K×5K×200 and 0.1 million nonzero entries. We con-
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struct this tensor from the well-known TREC Web Cor-
pus WT10G [24], which has about 1.7 million web-
pages (10GB raw text) Based on the hyperlinks in
the WT10G data, we select the top 3000 most pop-
ular words in the anchor texts to construct a source-
destination-word tensor. Elements in this tensor are
the word counts.

The network dataset comprises 3 modes: source
IP, destination IP and destination port number with
the size 3K×5K×200 and .5 million nonzero entries.
The data are aggregated from anonymized intranet
traffic flows from a university for over a month. We
selected the top 3000 IP address and top 200 ports
based on the number of distinct IP connections. The
element (i,j,k) in the tensor is 1 if there exists a con-
nection from source i to destination j on port k, and
otherwise 0.

Choosing the “right” size of core tensors often de-
pends on the applications, which is beyond the scope
of this paper. In this paper, we will present the effect
of core size on space and time for synthetic datasets.
For these real datasets, we fix the core size across all
experiments to be 10. For example, the Enron core
tensor is 10×10×10×10.

5.2.2 Performance

Figure 6 shows the space and time required for all four
datasets. Note that for Enron data, only the MET(2)
and MET(3) can run on that server, and Tucker-ALS
and MET(1) failed due to memory overflow. For the
other datasets, all methods completed, with a signifi-
cant gap (1000X difference) between Tucker-ALS and
our MET(1)-(2). Besides that, the similar trends are
observed as in synthetic data: 1) space-wise, MET
achieves order of magnitudes saving to the standard
Tucker-ALS; and 2) time-wise, MET is comparable to
Tucker-ALS.

5.2.3 Data mining case-study

As a higher-order generalization of SVD and PCA,
Tucker decomposition has widely been used as a core
technique for analyzing sparse tensors [19, 20, 8]. The
typical pattern is to use the factorized tensor for other
mining tasks such as clustering, trend identification
and anomaly detection. Here we first give a quick
overview of how Tucker can help with different min-
ing tasks. Then we demonstrate some results on the
clustering task.

Recall, given an input tensor X, Tucker approx-
imates X as G × {A} such that the error e =
‖X− G× {A} ‖ is small. With the result of Tucker,
several mining tasks can be approached as the follows:

(a) space consumption (b) CPU time

Figure 6. Performance of Tucker on real datasets:
Tucker-ALS and MET(1) failed to complete on Enron
due to memory overflow. Note that only 4-way tensor,
Enron, has the result on MET(3), while the others
are all 4-way tensors, therefore, only results up to
MET(2) are possible.

Clustering: Since A(n) ∈ RIn×Jn forms the basis
for mode n, any clustering algorithm can be applied on
A(n) by treating each row of A(n) as a Jn-dimensional
point. The benefit of doing clustering on these sub-
spaces is that they are jointly chosen across all modes
(1 ≤ n ≤ N) to minimize the global reconstruction
error, which cannot be achieved by looking at an indi-
vidual mode.

Trend detection: The core tensor G captures the
main trend in the tensor. The trend across mode i is
encoded in G×n A(n), e.g., PCA is the special case in
the second order case.

Anomaly detection: The reconstruction error
gives a global measure of the quality of the approxima-
tion. However, the error can be calculated on an arbi-
trary scale, e.g., on the element level or the sub-tensor
level such as slices or fibers. Higher error on a specific
sub-tensor indicates a deviation from the main trend
in that specific region, and the sub-tensor is therefore
an anomaly.

Now let us see one example of clustering on DBLP
dataset using Tucker decomposition with k-means.
Similar clustering has been proposed in [19]; however,
due to the huge memory overhead in original Tucker-
ALS, only a small set of data are involved in that
work. In particular, only publications from two con-
ferences are considered. However, with MET, now we
can easily analyze much larger tensors with 1,000 con-
ferences. More specifically, we apply Tucker powered
by MET on 5K × 1K × 1K DBLP to obtain three ma-
trices: the author matrix A(1) ∈ R5K×10, the confer-
ence matrix A(2) ∈ R1K×10, and the keyword matrix
A(3) ∈ R1K×10. Then we apply k-means on the row
vectors of each factor matrix. We set k to be 200, 100,
and 100 on A(1), A(2), and A(3), respectively.
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The sample clusters on each mode are shown in Ta-
ble 2. In the conference mode, it clearly clusters differ-
ent conferences into their corresponding domains, such
as KDD, ICDM, PAKDD for data mining, and ICDE,
VLDB, SIGMOD for databases. In the keyword mode,
it again identifies interesting group of keywords, such as
database, data, query for databases; 3D, video, motion,
images for graphics. Similarly, we are able to group au-
thors into clusters based on their research interests. A
more detailed analysis can be done to identify the cor-
relation across different modes, but due to the space
limitations, we omit that part.

In short, we believe with the help of MET, Tucker
can be more effectively applied to many large scale data
mining problems.

Conf.

1. KDD,ICDM,PAKDD,SIGIR

2. ICDE, VLDB,SIGMOD

3. UAI,ICML,NIPS,Agents

4. ICNP,ICDCS, SIGCOMM, SIGMETRICS

Word

1. database, data, query

2. 3d, video, motion, images, segmentation

3. knowledge, learning, reasoning

Author

1. H. V. Jagadish, Hans-Jrg Schek, David Maier,

Michael Stonebraker, Surajit Chaudhuri, Carlo Zaniolo,

Umeshwar Dayal, Rakesh Agrawal, Divesh Srivastava,

Jeffrey F. Naughton, Raghu Ramakrishnan, C. Mohan,

Yannis E. Ioannidis, David J. DeWitt, Jennifer Widom,

Laks V. S. Lakshmanan, Nick Koudas

2. Philip S. Yu, Ming-Syan Chen, Hector Garcia-Molina,

Abraham Silberschatz, Rajeev Rastogi

3. Elisa Bertino, Divyakant Agrawal, Amr El Abbadi,

Shamkant B. Navathe, Clement T. Yu, Jiawei Han,

Elke A. Rundensteiner, Hongjun Lu, Gerhard Weikum,

Masaru Kitsuregawa, Hans-Peter Kriegel, Kian-Lee Tan,

Beng Chin Ooi, Christos Faloutsos

Table 2. Sample clustering results on DBLP dataset

6 Related Work

Computing tensor decompositions The ALS al-
gorithm for computing Tucker was proposed by Kroo-
nenberg an De Leeuw [16] for the 3-way case and later
extended to the N -way case by Kapteyn, Neudecker,
and Wansbeel [12]. Andersson and Bro [3] suggest sev-
eral ideas for improving the computation in MATLAB.

Later, De Lathauwer, De Moor, and Vandewalle [9]
suggested futher improvements to improve the numeri-
cal accuracy of the method, which they renamed to be
the “higher order orthogonal iteration.”

There has been no previous work on computing
Tucker-ALS for large-scale sparse tensors. In their dis-
cussion of n-mode multiplication of a tensor by a ma-
trix A, Bader and Kolda [6] observe that “Unless A has
special structure (e.g., diagonal) the result is dense.”

Recently, other methods for computing Tucker fac-
torizations have been developed. Of note, Eldén and
Savas [10] have proposed a Newton-Grassmann opti-
mization approach. The procedures developed here
would also be important for applying their approach
to large-scale sparse tensors.

Tensor applications Tucker decompositions have
been used in a variety of applications in data min-
ing, and we highlight several distinctive examples here.
Savas and Eldén [17] applied the HO-SVD (a version of
the Tucker decomposition) to identifying handwritten
digits. Acar et al. [1, 2] applied Tucker and other ten-
sor decompositions to the problem of separating con-
versations in online chatrooms, and Chi et al. [8] have
applied it to the blogosphere. J.-T. Sun et al. [20]
used Tucker for analyzing clickthrough data. J. Sun
et al. [19, 18] have written a pair of papers on dynam-
ically updating a Tucker approximation, with applica-
tions ranging from text analysis to environmental and
network modeling.

7 Conclusions

In conclusion, tensors, especially sparse tensors, are
important data models for many different applications.
Tensor decompositions such as Tucker are becoming
standard tools for analyzing multiway data. How-
ever, the “intermediate blowup” issue in Tucker is a
severe problem for even moderately sized real prob-
lems. To address this problem, we propose memory-
efficient Tucker decomposition (MET) for decompos-
ing large sparse tensors. MET is adaptive to the avail-
able system resources with automatic parameter tun-
ing. Compared to the previous state-of-the-art Tucker-
ALS algorithm, MET can achieve significant space re-
duction (over 1000X) without sacrificing much speed.
We demonstrate the performance on both synthetic
and real datasets and illustrate the potential data min-
ing tasks with the help of MET.

In the future, we plan to evaluate other types of ten-
sor decomposition in the context of sparse data. Since
tensor decompositions such as Tucker may in turn de-
pend on matrix decompositions such as the SVD, an in-
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teresting extension is to leverage memory-efficient ma-
trix operations in the tensor decomposition to further
decrease memory consumption. Another different di-
rection is to study the parallel version of the tensor
algorithms.
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