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Abstract

Calculations can naturally be described as graphs in which vertices represent computation

and edges re¯ect data dependencies. By partitioning the vertices of a graph, the calculation can

be divided among processors of a parallel computer. However, the standard methodology for

graph partitioning minimizes the wrong metric and lacks expressibility. We survey several

recently proposed alternatives and discuss their relative merits. Ó 2000 Elsevier Science B.V.

All rights reserved.
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1. Introduction

Graphs are widely used to describe the data dependencies within a computation.
Recall that a graph, G � �V ;E�, consists of a set of vertices, V � fv1; v2; . . . ; vng, and
a set of pairwise relationships, E � V � V , called edges. If �vi; vj� 2 E, then we say
that vertices vi and vj are neighbors. For our purposes, the vertices of the graph
represent units of computation, and the edges encode data dependencies. Sometimes
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it is appropriate to associate weights with the nodes and/or edges of the graph to
indicate the amount of work and/or data, respectively.

For example, di�erential equations are usually solved numerically on a grid.
During each iteration in the process towards a solution, all the grid points are up-
dated using neighboring values in the mesh. In Fig. 1 we show the mesh and an
associated data dependency graph for a symmetric seven-point stencil. Here, each
vertex in the graph at right represents the computation to update the associated
point on the grid. Each vertex has edges connecting it to the vertices from which it
needs information. Outputs from one iteration serve as inputs for the next.

Once we have a graph model of a computation, graph partitioning can be used to
determine how to divide the work and data for an e�cient parallel computation. Our
objectives, stated loosely, are to evenly distribute the computations over p processors
by partitioning the vertices into p equally weighted sets while minimizing interpro-
cessor communication which is represented by edges crossing between partitions.

It is this simple relationship between graphs and computations that explains the
ubiquity of graph partitioning in parallel computing. Graph partitioning is uni-
versally employed in the parallelization of calculations on unstructured grids in-
cluding ®nite element, ®nite di�erence, and ®nite volume techniques using both
explicit and implicit methods. It is used in the parallelization of matrix±vector
multiplication for all types of iterative solvers. It is also used to parallelize neural net
simulations, particle calculations, circuit simulations, and a variety of other com-
putations.

Until recently only the standard graph partitioning approach has been employed.
The standard approach is to model the problem using a graph as described above
and partition the vertices of the graph into equally weighted sets so that the weight of
the edges crossing between sets is minimized. Well-known software packages such as
Chaco [13] and METIS [20] can be used for this purpose. Note that the graph
partitioning problem is NP-hard [9], so these tools merely apply heuristics to gen-
erate approximate solutions.

Unfortunately, the standard graph partitioning approach has several signi®cant
shortcomings that are discussed in detail in Section 2. The edge cut metric that it tries
to minimize is, at best, an imperfect model of communication in a parallel compu-
tation. The model also su�ers from a lack of expressibility that limits the applications
it can address.

Fig. 1. Grid, stencil, and graph.
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This paper extends and elaborates upon Hendrickson's critique of the standard
partitioning model in [10]. Whereas Hendrickson restricted his concerns to matrix±
vector products, in the current paper we show that the same issues plague virtually
all applications of graph partitioning to parallel computation. In Section 3, we
survey some recent work on alternative models that address some of the limitations
of the standard approach. We follow with a brief discussion of algorithms in Section
4, and suggest some fertile areas for further research in Section 5.

2. Shortcomings of the standard graph partitioning approach

We discuss several shortcomings of the standard graph partitioning approach. We
begin with ¯aws associated with using the edge cut metric (Section 2.1) and continue
with limitations of the standard graph model (Section 2.2).

2.1. Flaws of the edge cut metric

Minimizing edge cuts has several major ¯aws. First, although it is not widely
acknowledged, edge cuts are not proportional to the total communication volume, as
illustrated in Fig. 2. The ovals correspond to di�erent processors among which the
vertices of the graph are partitioned. Assume that each edge has a weight of two
corresponding to one unit of data being communicated in each direction, so the
weight of the cut edges is 10. However, observe that the data from node v2 on
processor P1 need only be communicated once to processor P2; similarly with nodes
v4 and v7. Thus, the actual communication volume is only seven. In general, the edge
cut metric does not recognize that two or more edges may represent the same in-
formation ¯ow, so it overcounts the true volume of communication.

Second, the time to send a message on a parallel computer is a function of the
latency (or start-up time) as well as the size of the message. As has been observed by a
number of researchers, graph partitioning approaches try to (approximately) mini-
mize the total volume but not the total number of messages. Depending on the
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Fig. 2. Edge cuts versus communication volume.
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machine architecture and problem size, message latencies can be more important
than message volume.

Third, the performance of a parallel application is generally limited by the slowest
processor. Even if the computational work is well balanced, the communication
e�ort might not be. Rather than minimizing the total communication volume or even
the total number of messages, we may instead wish to minimize the maximum vol-
ume and/or number of messages handled by any single processor. As several re-
searchers have noted, the standard edge cuts measure does not encapsulate this type
of objective.

Last, on many architectures the time to send a message depends upon the distance
between the sending and receiving processors. Geographic distance is not the issue
here, but rather the number of switches the message is routed through. Although
most modern machines have some form of cut-through or worm hole routing that
enables a single message to travel quickly between distant processors, the commu-
nication network is usually handling many messages simultaneously. A message
between distant processors ties up many wires that cannot be used by other mes-
sages. To avoid message contention and improve the overall throughput of the
message tra�c, it is preferable to have communication restricted to nearby proces-
sors. For the problem illustrated in Fig. 2, on a one-dimensional row of processors,
the layout P3±P1±P2 would be preferable to P1±P2±P3.

In actuality, we are interested in all of these metrics to varying degrees, depending
on how they a�ect the overall speed of the application. We likely want to minimize
an objective function with several components (e.g., total volume and total number
of messages), weighted to re¯ect the importance of each measure. In even more
complicated settings, we may wish to balance the sum of the computational and
communications work on each processor while minimizing these combined objec-
tives.

Despite the limitations of the edge cut measure, the standard partitioning
approach has proved successful for the parallel solution of di�erential equations
and grid-based problems in general for several reasons. First, grid points usually
have only a small number of neighbors, so the number of edge cuts is within a
small multiple of the actual communication volume. This is not true of more
general problems with more complex data dependencies. Second, computational
grids generally exhibit a high degree of geometric locality which ensures that good
partitions exist [29]. If the grid size, n, is increased while the number of processors
is held ®xed, the communication volume grows only as n2=3 in three dimensions
and n1=2 in two dimensions. Similarly, geometric locality tends to limit the
number of messages each processor needs to send. Last, the communication
volume per processor is fairly evenly distributed since there usually is not an
enormous di�erence in the size of the boundary of each piece of the grid. For all
these reasons, large grid computations tend to be limited by computational per-
formance, so the details of the communication (and hence the partition) are not
critical. For other applications with more complex dependency patterns, the
quality of the partition can have a much more dramatic impact on overall per-
formance.
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2.2. Limitations of the standard graph model

Besides minimizing the wrong objective function, the standard graph partitioning
approach su�ers from limitations due to the lack of expressibility in the model.

One limitation of the undirected graph model is that it can only express symmetric
data dependencies. For example, the graph associated with a symmetric matrix is
shown in Fig. 3. For the computation y � Ax, vertex vi is associated with the com-
putation of the inner product between row i of the matrix A and the vector x. Ob-
serve that the edge between node v1 and v2 symbolizes a symmetric dependency:
v1 needs x2, and v2 needs x1.

However, if the matrix is square but unsymmetric, then the dependencies are
unsymmetric as well: v1 might need x2, while v2 does not need x1. This situation can
be easily represented in a directed graph, but not in the standard model. In a directed
graph, edges are directed from the data producing vertex to the data consuming
vertex. There are two work-arounds to make the standard model `®t' unsymmetric
dependencies. The ®rst is to convert the directed edges to undirected edges. The
second is a slight extension of the ®rst; an edge that represents only a one-way
communication gets a weight of one, and an edge that represents two-way com-
munication gets a weight of two.

Unsymmetric dependencies show up in other settings as well. For example, ¯ow
calculations often involve unsymmetric stencils as depicted in Fig. 4.

Another limitation of the symmetric model is that it forces the partition of the
input and output data to be identical. This is often desirable, particularly when the
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Fig. 3. Graph of a symmetric matrix.

Fig. 4. Grid, stencil, and directed graph.
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same calculation is performed over and over and the output from one computation is
the input to the next. But in many situations this is an unnecessary restriction. For
instance, the standard model generates identical partitions of x and y when com-
puting y � Ax for a square matrix. For unsymmetric matrices, communication may
be reduced by allowing the two partitions to di�er. For example, the input x may be
the result of a previous two-part operation that ®rst computes y � Ax and then
z � ATy; this e�ectively maps from x-space to y-space and back to x-space. (The data
layout and communication for application of A and AT is identical; see [12]).

A third limitation of the standard model is that it assumes that the input and
output of the calculation are the same size, which may not be the case. For example,
when A is rectangular in the calculation of y � Ax, the x- and y-spaces are of di�erent
dimensions. The standard model handles symmetric matrix±vector multiplication
(y � Ax) by having a single vertex vi represent both xi and yi. When the matrix is not
square, x and y are of di�erent lengths, and the standard model is inapplicable.

Finally, even within the general framework of calculations that are repeated over
and over again, it is common for the calculation to consist of several distinct phases.
Examples include the application of a matrix and a preconditioner in an iterative
method, solving a di�erential equation and applying boundary conditions, simulat-
ing di�erent phenomena in a multi-physics calculation, and advancing a grid and
detecting contacts in a transient dynamics computation. The union of multiple
phases cannot generally be described via an undirected graph. As we see in the next
section, some alternatives to the standard model retain its basic simplicity while
handling some of these more complex situations.

3. Alternative graph partitioning models

Some of the shortcomings of the standard graph partitioning model can be ad-
dressed by using recently developed alternatives. We describe four such non-stan-
dard models below.

3.1. A bipartite graph model

As we noted in Section 2.2, the standard model using an undirected graph can
only encode symmetric data dependencies and symmetric partitions. These limi-
tations are a particular problem for iterative solvers on unsymmetric or non-square
matrices. When using a preconditioner, the inability of the standard model to
capture multiple phase calculations is also a problem. In [11,12,24], Hendrickson
and Kolda propose a bipartite graph model for describing matrix±vector multi-
plication that addresses some of these shortcomings. The bipartite model can also
be applied to other problems involving unsymmetric dependencies and multiple
phases.

A bipartite graph, G � �V1; V2;E�, is a special type of graph in which the vertices
are divided into two disjoint subsets, V1 and V2, and E � V1 � V2. So, no edge con-
nects two vertices in the same subset; instead, all the edges cross between V1 and V2.

1524 B. Hendrickson, T.G. Kolda / Parallel Computing 26 (2000) 1519±1534



This bipartite graph representation is most useful when the initial tasks are log-
ically distinct from the ®nal tasks, such as in the transfer between phases of the
multi-phase calculations described in Section 2.2. An important example is matrix±
vector multiplication with non-square matrices. Fig. 5 shows the bipartite graph
representation of a rectangular matrix. The sets V1 and V2 correspond to the row and
column vertices, respectively. Each row vertex in V1 is weighted with the number of
non-zeros in its row; e.g., row vertex r4 has a weight of one. This weighting re¯ects
the computational work required in the matrix±vector product. Whichever processor
owns vertex ri will own the piece yi of the resulting solution vector y � Ax. The
partitioning of the column vertices (V2) a�ects the layout of the input vector, x. The
column vertices may be left unweighted so that x may be partitioned in the optimal
way to minimize edge cuts. Better yet, the column vertices may be weighted to dis-
tribute the computation of another operation on the input data such as level-1 BLAS
operations or multiplication by another matrix such as a preconditioner in an iter-
ative method.

The bipartite graph model is useful principally where the standard model fails to
be a good representation, and it has three main advantages. First, it can encode a
class of problems that the standard graph model cannot. Speci®cally, the initial (or
input) vertices can be di�erent from the ®nal (or output) vertices. Second, even if the
initial vertices are identical to the ®nal vertices, the bipartite model allows the initial
partition to di�er from the ®nal partition. It achieves this by representing each vertex
twice, once as an initial vertex and once as a ®nal vertex. This freedom can allow for
a reduction in communication. However, in many applications a symmetric partition
is preferable, and this model cannot naturally provide that. Third, by partitioning
both the initial and the ®nal vertices, it can ensure load balance in two separate
operations, as mentioned above.

Although the bipartite model has expressibility that the standard model lacks, the
algorithms in [12] still optimize the ¯awed metric of edge cuts (as well as sharing the
other problems of the standard model described in Section 2.1). As we see in the
Section 3.2, this problem can be addressed by optimizing a graph quantity other than
cut edges.

Although the bipartite model is good for describing two computational opera-
tions, it is not able to accurately encode more. One possible generalization is to use a
k-partite graph in which the ®rst set of vertices is connected to a second set, which is
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Fig. 5. Rectangular matrix and bipartite graph.
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connected to a third set, and so on. An alternative is the multi-constraint method-
ology described in Section 3.3.

3.2. A hypergraph model

Edge cuts are not equal to communication volume, as illustrated in Fig. 2. In the
®gure, vertex v2 on processor P1, for example, has two edges connecting to vertices on
processor P2, but v2 need only be communicated once. The true communication
volume is not a function of the number of edges being cut, but rather of the sum of
the number of processors to which each vertex has connections. More formally, the
total communication volume is

P
i bi; where bi is the number of external partitions

in which vertex vi has neighbors. We call this quantity the boundary cut of a parti-
tion. The observation that boundary cuts are the more appropriate metric was made
in [10]. Minimizing boundary cuts is a non-traditional graph partitioning problem,
but it can be addressed using the same basic algorithmic tools that have been de-
veloped for other partitioning variants. These ideas have been instantiated in the
current version of METIS [18]. Boundary cuts can also be employed in the bipartite
graph model from Section 3.1.

A more elegant expression of this metric is in the hypergraph model proposed by
Cßataly�urek, Aykanat, Pinar, and Pinar [3,5,26]. A hypergraph is a generalization of a
graph in which edges can include more than two vertices. A hypergraph,
G � �V ;H�, consists of a set of vertices, V, and a set of hyperedges, H. Each hy-
peredge comprises a subset of vertices. Note that graphs are special cases of hy-
pergraphs in which each hyperedge contains only two vertices. Hyperedges provide
an alternative representation of the data dependencies. The partitioning problem is
now to divide the vertices into equally weighted sets so that few hyperedges cross
between partitions.

The hypergraph model has broader applicability than the standard approach.
But even for problems that can be described with the standard model, the hyper-
graph model is preferable since it correctly minimizes the communication volume.
To see this, consider a computation like the one in Fig. 2 that can be described by a
standard undirected graph G � �V ;E�. Now construct an equivalent hypergraph
�V ;H� with jV j hyperedges. Each vertex, vi 2 G, corresponds to a hyperedge hi

consisting of vi and all its neighbors in G. A hyperedge represents the entities that
either produce or that consume a piece of data. When the vertices are partitioned
among processors, that piece of data must be communicated from the processor
that produced it to all those that consume it. Thus, the communication associated
with a hyperedge is one less than the number of processors its constituent vertices
are partitioned among. (This corresponds to the boundary cut value from the
discussion above.) By partitioning the hypergraph so that hyperedges are split
among as few processors as possible, the model correctly minimizes communication
volume.

In [5], Cßataly�urek and Aykanat apply this model to symmetric matrix±vector
multiplication. For a set of highly unstructured matrices from linear programming
problems, they report that the hypergraph model reduces communication by over

1526 B. Hendrickson, T.G. Kolda / Parallel Computing 26 (2000) 1519±1534



30% on an average over the standard partitioning approach. However, for reasons
discussed in Section 2.1, the gains are more modest for matrices from grid calcula-
tions, generally less than 10% [1].

In addition to resolving the principle problem of the edge cut metric, the hyper-
graph approach is more expressive than the standard model. It can encode problems
with unsymmetric dependencies and even problems in which the initial vertices di�er
from the ®nal vertices. In Fig. 6, we show two di�erent sketches of a hypergraph
relating the data dependencies for the rectangular matrix±vector multiply from
Fig. 5. For example, hyperedge h2 contains all the vertices that need x2, i.e., fv2; v4g.
In the left ®gure, the hyperedges are illustrated by the ovals. In the right ®gure, the
vertices are on one side and hyperedges on the other, and each hyperedge is con-
nected to the vertices that comprise it. We include this second hypergraph repre-
sentation to underscore the one-to-one relationship between hypergraphs and
bipartite graphs. The hypergraph partitioning model is closely related to the bipartite
model from Section 3.1, but the partitioning objectives are di�erent.

The guiding principle in the construction of a hypergraph is that each hyperedge
contains the set of vertices that generate or need some particular piece of data. This
principle applies equally well to the case when dependencies are uni-directional, and
it continues to correctly model the communication volume. However, there is a
subtle requirement that the data are produced by one of the vertices that depends on
it. For example, in Fig. 6 we assume that the data associated with hyperedge h1 live
on the processor that owns vertex v5. If that is not the case for some reason, e.g., h1 is
the output of v1, then h1 should also include its producing vertex, e.g., v1.

In this way, the hypergraph model can be used even in cases where the input and
output data partitions are not identical, although it is perhaps not as natural as the
bipartite model in this case. We simply ®nd the best partition for the computation
nodes using a hypergraph partitioner, and this yields a partition of the output data.
Then, rather than assuming the input data have the same partition as the output
data, we can calculate the optimal input data partitioning as an assignment problem.
Therefore, the hypergraph model can be an alternative to the bipartite model when
we are only encoding one operation; however, the bipartite (or k-partite) models are
still best when encoding multi-step operations.

In summary, we ®nd the hypergraph model to be uniformly superior to the
standard model. It is also an attractive alternative to the bipartite model for
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Fig. 6. Two hypergraph representations.
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unsymmetric problems when only one operation is being encoded. However, the
bipartite (or k-partite) models are still more powerful when encoding multi-phase
operations. This is particularly true when the bipartite model minimizes the
boundary cut value as discussed above.

3.3. Multi-constraint and multi-objective partitioning

The bipartite model from Section 3.1 is able to describe some types of multi-phase
calculations. An alternative approach is the multi-constraint partitioning model of
Karypis and Kumar [22]. Strictly speaking, the multi-constraint approach is not an
alternative to other models but rather an augmentation. In the multi-constraint
model, each vertex is assigned a vector of k weights that represent the work asso-
ciated with that vertex in each of k computational phases. The goal is now to par-
tition the vertices of that graph in such a way that communication is minimized and
that each of the k weights is balanced. In this way, each phase of the computation
will be load balanced. The edges in the graph represent data dependencies in all the
computational phases.

This is a fairly general model. For instance, when solving a di�erential equation
and also applying boundary conditions, each vertex can have two weights. The ®rst
weight re¯ects the work required by a grid point in the solver, and the second can
encode the work required for applying the boundary condition. For vertices not on
the boundary, the value of the second weight is zero. A successful partitioning for
this problem ensures that the equation solver is balanced in such a way that each
processor has an equal fraction of the work associated with the boundary condition.
An example of the utility of this model is provided by Stiller, Boryczko and Nagle
[28]. They use the multi-objective model to obtain a partition that balances the work
associated with each of the grids in a multi-grid solver which leads to signi®cant
improvement in the parallel performance of their multi-grid code.

The multi-constraint model can encode the bipartite (and k-partite) approaches as
a special case. Given a bipartite graph G � �V1; V2;E�, an equivalent multi-constraint
model would have a set of vertices V � V1 [ V2, and edges identical to those in the
bipartite graph. Each vertex would be assigned two weights, one for the phase
modeled by V1 and the second for the phase modeled by V2. Hence, each vertex would
have one of its weights set to zero. More generally, the multi-constraint model can
encode multiple phases with distinct vertices via a model in which it includes the
union of all vertices in all phases.

As originally proposed by Karypis and Kumar, the multi-constraint model at-
tempts to minimize edge cuts, but this is an unnecessary restriction. Hyperedges
could be used or, equivalently, the boundary cut value from Section 3.2.

A related model is the multi-objective approach of Schloegel, Karypis and Kumar
[27]. This model attempts to address the common situation in which a partition
should simultaneously minimize several di�erent cost functions. To achieve this each
edge is given a vector of j weights, each of which re¯ects one of the j di�erent cost
functions. The goal of the partitioning is to balance the vertex weights in such a way
that each of the cost functions is kept small. This model is well suited to multi-phase

1528 B. Hendrickson, T.G. Kolda / Parallel Computing 26 (2000) 1519±1534



computations in which di�erent communication patterns arise in di�erent phases.
This multi-objective approach can be combined with the multi-criteria methodology
to produce a still more encompassing model.

An important limitation of the multi-objective model is that its objective functions
are sums of edge weights. As discussed above, edge cuts are only a crude model of
communication cost. And other desirable goals, like minimizing the total number of
messages, are not amenable to this formalism.

Although the generality of the multi-objective and multi-criteria models is at-
tractive, the associated partitioning problems are quite di�cult. When simpler
models can be applied, they are usually easier to work with.

3.4. Skewed partitioning

Yet another alternative to the standard partitioning model is the skewed parti-
tioning approach developed by Pellegrini [25] and Hendrickson et al. [15]. As with
the multi-constraint model, skewed partitioning is really an augmentation of any of
the other graph partitioning models rather than a true alternative. In the skewed
model, each vertex is allowed to have a set of k preference values expressing its re-
spective desire to be in each of the k sets. When determining how to partition the
vertices, these preference values are considered along with the metrics of commu-
nication cost.

Preference values can be used in several di�erent ways to achieve di�erent ob-
jectives. In dynamic load balancing it is desirable that the new partition be similar to
the existing one to limit the amount of data that needs to be moved. This can be
encoded in the preference values by giving each datum a preference to remain in its
current partition [31]. The magnitude of the preference values can be adjusted to
trade-o� between partition quality and reduction in data movement.

Another use for preference values is to encourage communicating objects to be
assigned to architecturally close processors to reduce message congestion [15,25].
Assume we are partitioning for p processors by recursive application of a k-way
partitioner. After the ®rst partition, the graph is divided into k parts that are
assigned to k portions of the parallel machine, but the assignment of individual
vertices within each part is not yet completed. When doing subsequent partitions,
preference values can be used to guide the assignments to processors to encourage
neighboring vertices to be near each other in the parallel machine. A vertex in
initial partition i that has neighbors in partition j has preference to be assigned to
a processor that is near the jth portion of the machine. In this way, the parti-
tioning step is coupled with the problem of assigning partitions to processors. The
result is a partition that exhibits better message locality. As before, the magnitude
of the preferences can be altered to trade-o� between partition quality and message
locality.

This same idea was developed independently in the circuit placement community
to place circuit elements on a chip with short overall wire lengths [7]. Several algo-
rithms for this problem have been devised including multi-level and spectral
approaches [15].

B. Hendrickson, T.G. Kolda / Parallel Computing 26 (2000) 1519±1534 1529



4. Partitioning algorithms

The di�erent graph partitioning models reviewed in Section 3 are only viable if
e�cient and e�ective algorithms can be developed to partition them. Fortunately,
the multi-level paradigm for partitioning has proven to be quite robust and general.
The multi-level approach was devised independently by several researchers in the
early 1990s [2,6,14] and popularized by the Chaco [13] and METIS [20] partitioning
tools. The basic idea is quite simple. A large graph is approximated by a sequence of
smaller and smaller graphs. The smallest graph is partitioned using any suitable
algorithm. This partition is then propagated back through the sequence of larger and
larger graphs, being re®ned along the way.

Adapting the multi-level approach to a particular partitioning problem requires
the following tools:
1. A method for generating a sequence of smaller graphs that preserve the essential

properties of the original.
2. An algorithm for partitioning the smallest graph.
3. A re®nement technique for improving the partition as it is propagated back up to

the original graph.
These tools are generally straightforward to devise; however, the precise details of
these tools require some attention to the nature of the partitioning problem being
addressed. The generation of smaller graphs is typically done with some kind of edge
contraction scheme. Any existing algorithm that handles weights on edges and
vertices can be used to partition the smallest graph. The re®nement often involves a
greedy algorithm in the spirit of Kernighan±Lin [23].

Following the multi-level paradigm, e�cient and e�ective partitioners have been
developed for partitioning graphs to minimize edge cuts [2,14], minimize vertex cuts
[16], and perform multi-constraint partitioning [22]. The same approach has been
successfully used to partition hypergraphs to minimize cut hyperedges [4,6,19] and to
partition bipartite graphs [12]. The ¯exibility of the technique makes it well suited to
address a range of di�erent partitioning models and metrics.

5. Conclusions and directions for further research

In many respects, those of us working in the partitioning ®eld have been fortu-
nate. The dominant application for our algorithms and tools has been di�erential
equation solvers. Whether solved implicitly or explicitly, these applications produce
dependency graphs that are fairly easy to partition, and large problems are com-
putation rather than communication bound. The applications achieved good parallel
performance despite the limitations of our approaches.

Di�erent applications are now becoming common that are much more sensitive to
partition quality. Challenging partitioning problems that arise from interior point
methods for linear programming, least squares problems, circuit simulation, trun-
cated singular value computations for latent semantic indexing in information re-
trieval, and other applications are revealing the limitations of our traditional
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approaches. The standard graph partitioning methodology optimizes an inappro-
priate quantity, and its expressibility is too limited to address some important classes
of applications.

We surveyed several alternative models that address some of the problems with
the standard methodology. The bipartite model and the hypergraph model can both
handle unsymmetric dependencies. The hypergraph approach correctly encodes
communication volume, while the bipartite model and its k-partite generalization
have the advantage of being able to represent multi-phase calculations. The multi-
constraint and multi-objective approaches o�er alternative ways to represent
multiple phases, while the skewed partitioning model provides a mechanism for
including extra information in a partitioning problem. However, these new models
only start to address the problems detailed in Section 2. A number of important open
problems remain, including the following:

(1) Partitioning for alternate objectives or multi-objectives. As discussed in Sec-
tion 3.3, the work of Schloegel et al. [27] on multi-objective is promising, but
limited. The objective functions are unable to express all desirable properties of a
partition. For instance, models that are well suited to minimizing the number of
messages or the maximum communication per processor instead of the total
communication are still needed. Of further value would be hybrid models that
encapsulate several metrics. New partitioning metrics may lead to new algorithmic
challenges.

(2) Partitioning for alternative architectures. Most of the work in partitioning
techniques has been motivated by distributed memory architectures and has tried to
minimize interprocessor communication. Similar, but not identical, issues arise in
shared memory machines (SMPs), where it is advantageous to partition the shared
memory between the processors to minimize cache coherence overhead. However,
the precise objectives in the shared memory setting may di�er from those for dis-
tributed memory machines. This problem deserves more attention.

Other architectural trends pose di�erent challenges for partitioners. One impor-
tant development is the growing importance of heterogeneous computing platforms.
Many current parallel machines consist of a collection of shared memory nodes
networked together. These machines exhibit signi®cant network heterogeneity. Ac-
cesses within an SMP are fast, but access between SMPs is slow. There is a need for
work in this area.

Another important architectural development is the growing popularity of build-
it-yourself parallel computers, exempli®ed by Beowulf-class machines. Machines
built in this way can exhibit both network and processor heterogeneity. The parti-
tioner needs to worry about di�ering processor speeds and memory sizes, as well as
varying access times. Appropriate machine models and partitioning approaches for
heterogeneous architectures are largely an untouched area, although one step in this
direction has been taken by Teresco et al. [30].

(3) Parallel partitioning. Most of the work on parallel partitioning has been done
in the context of dynamic load balancing. Algorithmically, dynamic load balancing
is more challenging than the problems we have been discussing since there is a pre-
existing partition. If the new partition deviates signi®cantly from the current one,
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then a large remapping cost is incurred. This consideration does not occur in static
settings and complicates the evaluation of dynamic partitioning algorithms. These
issues were discussed in Section 3.4.

Independent of dynamic problems, several trends are increasing the need for
parallel partitioners. First is the interest in very large meshes, that will not easily ®t
on a sequential machine and so must be partitioned in parallel. Second, for a more
subtle reason, is the growing interest in heterogeneous parallel architectures. Gen-
erally, partitioning is performed as a preprocessing step in which the user speci®es
the number of processors on which the problem will run. With heterogeneous par-
allel machines, knowing the number of processors is insu�cient ± the partitioner
should also know their relative speeds and memory sizes. A user wants to run on
whatever processors happen to be idle when the job is ready, so it is impossible to
provide this information to a partitioner in advance. A better solution is to partition
on the parallel machine when the job is initiated. A number of parallel partitioners
have been implemented including Jostle [32] and ParMETIS [21]. This is an active
area of research.

It is worth noting that some of the more e�ective dynamic load balancers for grid
problems use the grid geometry instead of the graph of data dependencies. Among
the widely used algorithms in this class are recursive coordinate bisection [17] and
variants of space ®lling curves [33]. These algorithms tend to be faster than graph
methods, but produce lower quality partitions. It is likely that graph and geometric
partitioners will continue to coexist since the optimal trade-o� between runtime and
quality varies from application to application.

(4) Partitioning for domain decomposition. Domain decomposition is a numerical
technique in which a large grid is broken into smaller pieces. The solver works on
individual subdomains ®rst, and then couples them together. The properties of a
good decomposition are not entirely clear, and they depend upon the details of the
solution technique. But they are almost certainly not identical to the criteria used to
minimize parallel communication. For instance, Farhat et al. [8] argue that the
domains must have good aspect ratios (e.g., not be long and skinny). It can also be
important that subdomains are connected, even though the best partitions for par-
allel communication need not be. For the most part, practitioners of domain de-
composition have used partitioning algorithms developed for other purposes, with
perhaps some minor perturbations at the end. But a concerted e�ort to devise
schemes that meet the need of this community could lead to signi®cant advances.
Progress in this area will probably require a combination of ideas from numerical
analysis and graph algorithms.

Despite the general feeling that partitioning is a mature area, there are a number
of open problems and many opportunities for signi®cant advances in the state-of-
the-art. We expect to see a continuing stream of new insights and approaches that
more closely ®t the di�erent classes of applications. As the hegemony of the standard
approach crumbles, we foresee a fracturing of the partitioning ®eld as di�erent re-
searchers choose to work on di�erent models and applications. This is a positive
development to the extent that this more focused work leads to better tools for
speci®c applications.
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