
NAS Parallel Conjugate Gradient Benchmark on

the Cray T3D

Tamara L. Gibson �

Department of Mathematics

University of Maryland

College Park, Maryland 20740

July 17, 1996

SRC Technical Report Number: SRC-TR-94-129

Abstract. The NAS Parallel Benchmark [1] kernels were developed to evaluate

the performance of highly-parallel supercomputers. These benchmarks are unstruc-

tured in the sense that they give only an algorithm de�ning the benchmark; all im-

plementation details are left to the programmer. We looked speci�cally at a kernel

to solve an unstructured sparse linear system via the conjugate gradient method,

the CG kernel. This kernel was implemented on one of the newest massively-parallel

supercomputers, the Cray T3D. Currently, our implementation of the CG kernel on

the T3D achieves 306 MFlops on 64 processors. In comparison, a Cray YMP single

head gets 127 MFlops, a 128 processor iPSC/860 gets 181 MFlops, and a 32,768

processor CM-2 gets 105 MFlops [5].

�The bulk of this work was done at Supercomputing Research Center (SRC), 17100
Science Drive, Bowie, MD 20715-4300. I would like to thank Steve Kratzer and John Con-
roy of SRC for their help. In addition, I would like to acknowledge the National Physical
Science Consortium (NPSC), the National Security Agency (NSA), and the University
of Maryland for fellowship support. Lastly, I would like to thank my advisor, Dianne
O'Leary, for her help and advice on this project.

0



1 Introduction

1.1 Problem Introduction

The Numerical Aerodynamical Simulation (NAS) Parallel Benchmark ker-
nels were developed by a team of experts at the National Aeronautics and
Space Administration (NASA) to evaluate the performance of highly-parallel
supercomputers. The kernels exemplify the computation and data move-
ments typical of large-scale computational uid dynamics (CFD) applica-
tions. We will be concentrating on the conjugate gradient kernel. This
kernel uses the inverse power method to �nd an estimate of the largest
eigenvalue of a symmetric positive de�nite sparse matrix with a random
pattern of nonzeroes. We will do timings on the 1400�1400 Class A matrix
which has approximately 1.8 million nonzeroes. [1]

1.2 T3D Introduction

The Cray T3D, released in 1994, is a massively parallel multiple-instruction/
multiple-data (MIMD) machine. It consists of a variable number of process-
ing elements (PE's) connected in a three-dimensional torus with a Cray C90
or Cray C98 as a front end. Each PE consists of a 150 MHz Dec Alpha cen-
tral processing unit (CPU) with 8K bytes of cache and 2 megawords (MW)
of dynamic access random memory (DRAM). [6] All timings are based on
code compiled with \AC" 1 which is a modi�cation of the Gnu C compiler
for the T3D.

2 T3D Description

2.1 Computations and Memory Organization on the T3D

Memory structure plays an important role in the performance of the indi-
vidual processors. As mentioned before, we have 8K bytes of direct-mapped
cache and 2 MW of DRAM. Memory is loaded into the cache in the form
of four-word (32 bytes) cache lines. DRAM access takes 24 ticks/cache-line
versus one tick/word for cache access. For example, if we need to use all
four words in a cache line, the �rst access takes 24 ticks, and the additional
three accesses take one tick each, giving an average access time of about 7
ticks/word. On the other hand, if we need only one word in a cache line
from memory, the average access time is 24 ticks/word. In either case, using
the date repeatedly before the cache line is written over lowers the average
access time dramatically. As discussed in Section 5, the sparse matrix-dense
vector multiply has poor memory access performance because it accesses
the dense vector randomly and hence usually only reads one word per cache
line. This poses serious performance penalties since the processor spends
much of its time waiting for memory access.

1\AC" is written by Bill Carlson and Jesse Draper of SRC.

1



2.2 Communications on the T3D

The Cray T3D is arranged as a three-dimensional torus, although users
are not always allocated PE's in that pattern. We will treat the PE's as
a two-dimensional grid in our application. Communications are controlled
via router chips; hence, the programmer has no control over the route that
a message takes between any two PE's. We will not be concerned with
communication patterns for the purposes of this research.

Our communications are done via the shared memory library, otherwise
known as the \shmem" library. We use what is known as a \shmem put",
hereafter referred to as a PUT. A PUT writes directly to the memory of
another processor. It returns as soon as the message is launched onto the
interprocessor network; it does not wait for receipt on the other PE. To wait
for receipt on the other PE, a \net quiet" command must be issued. The
\net quiet" does not return until all outstanding PUT's have completed
on the remote processors. A \barrier" is a synchronization command; all
PE's must reach the barrier before the application continues to execute. If
all PE's execute a PUT, a \net quiet", and a \barrier", we are guaranteed
that all messages have been sent and received by all PE's. Another issue
is cache coherence; that is, we want the values in cache to match the val-
ues stored in memory. A PUT writes directly to a remote PE's memory
but does not update the remote PE's cache. We handle this problem by
doing a \cache ush" which tells the PE that the current cache contents
are invalid. A BARRIER command refers to doing a \net quiet", \bar-
rier", and \cache ush" command. See the Shmem user's guide [2] for more
information on this subject.

3 Description of Problem

3.1 Inverse Power Method

We are using the inverse power method to �nd the largest eigenvalue of a real,
symmetric, positive de�nite matrix. This algorithm is outlined speci�cally
as part of the benchmark. A denotes the real square matrix of order n, lower
case Roman letters are vectors, and lower case Greek letters are scalars. We
denote transpose by a \T" superscript, and k�k denotes the Euclidean norm.
The inverse power method is implemented as follows with the signi�cant
subroutine names given in boxes:

(1) x = [1; 1; � � � ; 1]T
(2) Start Timing
(3) For it = 1; niter
(4) Approximate the solution to the system Az = x

and return krk = kx�Azk CG Solve

(5) � = �+ 1=(xT z)
(6) Output: it, krk, and �

(7) x = z=kzk Normalize

(8) End it-Loop

2



(9) Stop Timing

The Class A problem has n = 14; 000, niter = 15 and � = 20. [1]

3.2 CG Solve

The conjugate gradient routine requires 25 iterations of the conjugate gradi-
ent method and is outlined speci�cally as part of the benchmark. We outline
the conjugate gradient method below with the needed subroutines for each
step given in boxes [1]:

(1) z = 0
(2) r = x

(3) � = rT r Dot

(4) d = r
(5) For i = 1; 25

(6) q = Ad Mat-Vec Mult

(7) � = �=(dT q) Dot

(8) z = z + �d Saxpy

(9) �0 = �

(10) r = r � �q Saxpy

(11) � = rT r Dot

(12) � = �=�0
(13) d = r + �d Saxpy

(14) End i-Loop

(15) Compute residual: krk = kx�Azk Residual

See Golub and Van Loan [4] for further discussion of the conjugate gradient
method. In the next section, we outline the needed subroutines and their
implementations on the T3D.

4 Analysis of Subroutines

4.1 Notation

We will let p denote the number of PE's in use. The scalars (�; �; �; �0; �; �)
used in the Inverse Power Method and the CG Solve are stored redun-
dantly on every PE. The vectors (d; q; r; x; z) are evenly divided among the
PE's; i.e., the kth PE, k = 1; � � � ; p, holds elements (k � 1) � n

p
+ 1 through

k � n
p
of each vector. We will make the assumption that p divides n; if not,

the problem can be \padded" to make it so. For convenience, we will let
n̂ denote the number of vector elements each PE holds; i.e., n̂ = n

p
. The

notation xi denotes the ith element of the vector x. We will discuss the
storage of the matrix A when we explain the Mat-Vec Mult subroutine in
Section 4.4.

We must be able to clearly di�erentiate between our global perspective
and each PE's local perspective in our algorithm discussion. In general, a
variable with a bar or a hat above it is a variable from the PE's perspective.

3



All other variables are from a global perspective. See Table 4.1 for a listing
of all parameters.

Name Relations Description

n Dimension of Problem

p Number of processors

n̂ n̂ = n=p Dimension of vector size on each PE

nh; nw The matrix A is divided into nh � nw blocks

ph ph = n=nh Height of PE grid in Mat-Vec Mult

pw pw = n=nw Width of PE grid in Mat-Vec Mult

Table 1: Summary of Parameters

4.2 Saxpy

This subroutine computes u = �v + w where � is a scalar and u, v, and w
are real n-vectors. The kth PE, k = 1; � � � ; p, holds elements (k � 1)n̂ + 1
through kn̂ of u, v, and w. We refer to a PE's local pieces of u, v, and w
as û, v̂, and ŵ, respectively; furthermore, � is stored redundantly on every
PE. The algorithm goes as follows for each PE:

(1) For i = 1; n̂
(2) ûi = �v̂i + ŵi

(3) End i-Loop

Hence, we see that SAXPY requires no communications and n̂ = n
p
mul-

tiplies and additions per PE. Hence, we will get linear speed-up in p, the
number of PE's.

4.3 Dot

Here we compute � = uT v where u and v are real n-vectors. The �nal
answer, �, must be repeated on all PE's. Once again, we will let û and v̂
denote each PE's local piece of u and v, and we let � be repeated on every
PE. We look at the inner product as follows:

� =
nX
i=1

uivi =
pX

k=1

kn̂X

j=(k�1)n̂+1
uivi:

PE k computes the sum � =
Pkn̂

j=(k�1)n̂+1 uivi. All that remains is to add up
the individual pieces and be sure that the result is distributed throughout
all the PE's. We will do the second part using a buttery-style accumulation
[3]. The algorithm goes as follows on PE k:

(1) � = 0
(2) For i = 1; n̂
(3) � = � + ûiv̂i

4



(4) End i-Loop
(5) For i = 1; log2 p
(6) PUT � into �0 on PE k0 = ((k � 1)� 2i) + 1
(7) BARRIER

(8) � = � + �0

(9) BARRIER

(10) End i-Loop

In the above algorithm, � symbolizes XOR. PUT and BARRIER are
described in Section 2.2. The �rst BARRIER ensures that all PUT's
are completed before � and �0 are summed. The second BARRIER is
only necessary to ensure that �0 is not overwritten before it is used. This
BARRIER can be eliminated by PUT-ing to a di�erent spot for each
value of the counter i.

The operation count on this routine is easy to compute. In steps (2)
through (4), we require n̂ additions and multiplies. In steps (5) through
(10), we require log2 p additions. Hence, the total number of computations
required is

2n

p
+ log2 p:

The computational work decreases almost linearly with the number of PE's,
depending on the relation between n and p.

The communications are a di�erent matter. Each PE has to do log2 p
one-word PUT's. Not only does the number of PUT's per processor in-
crease by one each time the number of PE's doubles, but the network con-
tention also grows. This makes communication costs hard to scale. Some-
times increasing the number of PE's can actually lessen the network con-
tention because it creates a di�erent communication pattern.

4.4 Mat-Vec Mult

The matrix-vector multiply is by far the most expensive subroutine of the
CG Solve routine. This is true for both computations and communications.
To summarize, we wish to compute

u = Av;

where u and v are n-vectors and A is an n � n matrix. In our case, A is
sparse, but we assume that dividing the matrix into evenly-sized blocks will
yield blocks with approximately the same number of non-zeroes.

4.4.1 Discussion of two matrix decompositions

First we discuss two di�erent approaches towards a parallel matrix-vector
multiply, both of which are explained in Bertsekas and Tsitsiklis [3].

1. Row Storage. The row storage method splits the matrix by rows.
PE k; k = 1; :::; p, holds rows (k � 1)n̂ + 1 to kn̂ of the matrix A and

5



all of the vector v. PE k then computes

ui =
nX

j=1

aijvj ; i = (k � 1)n̂+ 1; � � � ; kn̂:

At this point PE k knows elements (k � 1)n̂ + 1 through kn̂ of u
This method requires n � n̂ multiplies and (n� 1) � n̂ additions. After
this step, we need to do an all-to-all communication so that each PE
can again know all the elements of u for the next step. Hence, PE k
sends elements (k � 1)n̂+ 1 through kn̂ of u to the other p� 1 PE's.
Depending on the network con�guration and routing issues, this can
take varying amounts of time, but we will generalize and say that
the time is proportional to n because each PE needs to receive n� n̂
elements.

2. Column Storage. The column storage method divides the matrix
by columns. PE k; k = 1; :::; p, holds columns (k � 1)n̂ + 1 to kn̂ of
the matrix A and elements (k � 1)n̂ + 1 to kn̂ of the vector v. PE k
computes

kn̂X

j=(k�1)n̂+1
aijvj; i = 1; :::; n:

Once these quantities are computed, we sum across all PE's to compute
u.

ui =
pX

k=1

kn̂X

j=(k�1)n̂+1
aijvj ; i = 1; :::; n:

We divide up the work by having each PE sum up the p pieces nec-
essary to compute elements (k � 1)n̂ + 1 to kn̂ of u. Hence, each PE
must do n � n̂ multiplies and n � 2n̂ additions. The summation across
PE's requires that each PE send each of the other p� 1 PE's a packet
consisting of n̂ elements and receive packets of size n̂ from each of the
other p� 1 PE's. This is an all-to-all communication pattern. We will
again generalize and say that the communication time is proportional
to n because each PE receives n� n̂ elements.

4.4.2 Block Storage Method

We use a combination of these two methods in our version, which is re-
ferred to as the block method [5]. Instead of dividing the matrix by rows
or columns, we divide it into evenly-sized blocks of dimension nh � nw. We
aim to reduce communication cost without increasing computation cost.

6



Computations. Without loss of generality, we assume that the block di-
mensions are evenly divisible by p; if not, we can pad the matrix A so that
they are. We let ph =

n
nh

and pw = n
nw

. We then assign a coordinate address
to each PE based on its row and column coordinates as shown in Figure 1.
For example, PE 2 is assigned coordinates (2,1). In general, PE k is assigned
coordinates (kh; kw) where kh = (k�1)mod ph+1 and kw = b(k�1)=phc+1.

Column 1 Column 2 � � � Column pw

Row 1 1 ph + 1 � � � ph(pw � 1) + 1

Row 2 2 ph + 2 � � � ph(pw � 1) + 2
...

...
...

. . .
...

Row ph ph 2ph � � � p

Figure 1: PE layout

The matrix A is divided into nh � nw blocks as shown in Equation 1:

A =

2
66664

A11 A12 � � � A1pw

A21 A22 � � � A2pw
...

...
. . .

...
Aph1 Aph2 � � � Aphpw

3
77775
: (1)

Each processor handles one block of A; speci�cally, PE (kh; kw) handles
block Akhkw .

Next, we must break the problem of computing u = Av down. First, we
look at it componentwise:

ui =
nX

j=1

aijvj ; i = 1; :::; n:

We can break this sum down into a sum of sums:

ui =
pwX

kw=1

kwnwX

j=(kw�1)nw+1
aijvj;

i = (kh � 1)nh + 1; :::; khnh;
kh = 1; :::; ph:

(2)

The range that i is in determines what row of processors computes ui,
but the kwth PE in the row computes the kwth inner sum. Hence, PE
(kh; kw) computes

kwnwX

j=(kw�1)nw+1
aijvj ; (3)

for values of i between (kh� 1)nh+1 and khnh. This requires nw additions
and multiplications for nh sums; hence, the total number of additions and
multiplications per PE is 2nhnw. Of course, we have not yet done all the
sums we need to do. The next step is to do the outer summation of Equa-
tion 2. We need pw inner sums from pw di�erent processors summed for

7



each ui, i = 1; :::; n. Hence, we need to do npw additions. Because this work
can be divided among the PE's, we actually only need to do n̂pw additions
per PE; so, the total number of operations that needs to be done per PE is

n(2
n

p
+

1

ph
):

Communications. We assume that the vector v is initially distributed
evenly over the PE's as is needed for the Dot (Section 4.3) and Saxpy

(Section 4.2) routines, and we want to �nish with u distributed in the same
manner. To do the computations in Equation 3, we must have elements
(kw � 1)nw + 1 through kwnw of v in local storage for each PE in column
kw. These elements are initially distributed over the column, so we must do
a column all-to-all communication. Each PE must broadcast n

p
elements to

ph processors. Hence, the communications cost here is nw.
For the outer sum of Equation 2, we want to sum the pieces we have

computed to form the elements of u. We will have the kth PE compute the
kth portion of u; i.e., PE k will compute elements (k � 1)n̂+ 1 through kn̂
of u. For example, every PE in the �rst row will send the �rst n̂ elements of
its sum from Equation 3 to PE 1, the next n̂ elements to PE 2, and so on.
Speci�cally, each PE has a vector of length nh that it must divide into pw
pieces, each of length n̂. Each piece must then be broadcast to a di�erent
PE. Hence, we send pw di�erent packets of size n̂. So for this part, we have
communications proportional to nh.

Hence, the total communications cost is proportional to

nw + nh:

If nw = nh = np
p
, then our communications are reduced from n in the

row or column storage method to 2 np
p
in the block method. Note that in

all of these computations, if we set pw = 1 then we have the row storage
method, and if we set ph = 1, we have the column storage method.

Algorithm. Now we lay out the algorithm from PE k's point of view. We
will let �A represent Akhkw , v̂ represent elements (k�1)n̂+1 through kn of v,
�v represent elements (kw�1)nw+1 through kwnw of v. �w is a nh-long vector
representing the result of Equation 3. û represents elements (k � 1)n̂ + 1
through kn of u.

(1) PUT v̂ into positions (kw � 1)n̂+ 1 through kwn̂ of �v on every PE in
the same column.

(2) BARRIER
(3) For i = 1; nh
(4) �wi = 0
(5) For j = 1; nw
(6) �wi = �wi + �aij�vj
(7) End j-Loop
(8) End i-Loop

8



(9) k0 = (kh � 1)pw + 1
(10) For i = 1; pw
(11) PUT elements (i� 1)n̂+1 through in̂ of �w into a holding spot on PE

k0 + i.
(12) End i-Loop
(13) BARRIER
(14) Sum pieces just received to form û

Steps (1) through (2) concatenate the v̂ vectors from each PE in each
column to form the nw-vector �v which is repeated on each PE in the column.
Steps (3) through (8) do the local matrix-vector multiplication as described
in Equation 3 to compute ŵ. Step (9) computes the PE number which is the
�rst PE to need n̂ components of ŵ. Note that we actually do this using a
sparse matrix format. Steps (10) through (12) distribute the components of
ŵ to the pw PE's which are in charge of summing those components to form
û. The �nal step, (14), just adds up the pieces to form û, and the pieces of
u are now distributed evenly through the PE's as was speci�ed for the other
routines.

4.5 Normalize

We need to compute v = u=kuk. The algorithm uses procedures already
outlined. Let v̂ and û represent elements (k � 1)n̂+ 1 through kn of v and
u on PE k. Then the algorithm goes as follows:

(1) � = uTu Dot

(2) � =
p
�

(3) For i = 1; n̂
(4) v̂i = ûi=�
(5) End i-Loop

Step (1) computes uTu, and step (2) computes kuk using the results of step
(1). Steps (3) through (5) divide each piece of û by kuk and puts the result
into v̂. Hence, the global vector v is the normalized vector u. Hence, the
Normalize subroutine is the cost of one Dot routine plus n̂ divisions.

4.6 Residual

The residual routine requires that we explicitly compute Av and the norm
of w � Av. Hence, we will let û, v̂, and ŵ represent elements (k � 1)n̂ + 1
through kn of u, v and w, respectively, on PE k. The algorithm goes as
follows:

(1) û = Av Mat-Vec Mult

(2) For i = 1; n̂
(3) ûi = ŵi � ûi
(4) End i-Loop

(5) Compute � = ûT û Dot

(6) Return
p
�

9



Step (1) computes û on each PE. Steps (2) through (4) compute the di�er-
ence between ŵ and û, storing the result in û. Hence, u = w� u = w�Av.
Steps (5) and 6) compute kuk using Dot. As we can see, the Residual
subroutine has n̂ additions as well as the cost of the Dot and Mat-Vec

Mult routines.

5 Summary of Timings

Table 2 presents timings on the T3D of the CG Parallel Benchmark on 24

through 27 PE's in various con�gurations. The code was implemented as
described in Sections 3 and 4. Each row contains the following information:
number of PE's (p), dimensions of processor grid (ph and pw), performance
of code in megaops per second (MFlops), total time to execute where the
timing start and stop are speci�ed in Section 3.1 (Secs), and the percent of
time spent on communications (% Comm). The percent of time spent on
communications is measured only on PE 1 where the timing starts before
the initial Put and ends after the Barrier returns. It is meant to give only
a general idea of the amount of time spent on communications.

p ph pw MFlops Secs % Comm

16� 2 8 79.64 18.83 2

16 4 4 72.87 20.59 1

16 8 2 67.03 22.38 2

32 2 16 154.43 9.71 10

32� 4 8 155.10 9.67 2

32 8 4 142.90 10.50 3

32 16 2 130.09 11.53 6

32 32 1 121.01 12.39 11

64 2 32 259.14 5.79 22

64� 4 16 306.96 4.88 10

64 8 8 300.55 4.99 4

64 16 4 279.31 5.39 7

64 32 2 248.32 6.04 11

64 64 1 225.98 6.64 19

128 4 32 484.50 3.10 22

128� 8 16 563.50 2.66 13

128 16 8 516.40 2.90 13

128 32 4 498.95 3.00 15

* Best result for each value of p.

Table 2: Benchmark Timings on the Cray T3D

Examining Table 2 we note that the best performance does not always
correspond to the least communications as is frequently the case on other
machines. In fact, we see that for 64 processors, the best time is achieved by

10



p ph � pw Subroutine Total Percent Calls Avg. Ticks
Name Ticks of Time Per Call

16 2 x 8 Accumulate 4171218 0 810 5149

Mat-Vec Mult 2766377730 98 390 7093276

Dot 19909833 1 795 25043

Saxpy 30498160 1 1125 27109

Residual 106963668 4 15 7130911

32 4 x 8 Accumulate 5073147 0 810 6263

Mat-Vec Mult 1413763494 97 390 3625034

Dot 13003979 1 795 16357

Saxpy 15352961 1 1125 13647

Residual 54795423 4 15 3653028

64 4 x 16 Accumulate 5859420 1 810 7233

Mat-Vec Mult 626033167 85 390 1605213

Dot 9937444 1 795 12499

Saxpy 7664343 1 1125 6812

Residual 27739521 4 15 1849301

128 8 x 16 Accumulate 6861600 2 810 8471

Mat-Vec Mult 375061396 94 390 961695

Dot 9016210 2 795 11341

Saxpy 3978993 1 1125 3537

Residual 14687532 4 15 979168

Table 3: Subroutine Timings

the 4�16 layout which has 10% of its time spent in communications. As we
shall later observe, computations can be a big bottleneck on the T3D - due
largely to memory access delays explained in Section 2.2. Looking at the
best results, we can compute that the MFlops per PE hovers between 4.4
and 5, getting worse as p grows. This is well below an individual processor's
peak performance which is over 150 MFlops.

Table 3 gives a breakdown of the timings into the various subroutines:
Accumulate, Mat-Vec Mult, Dot, Saxpy, and Residual. For each
value of p, we have chosen the case with the best overall time shown in
Table 2. Please note that these subroutines do call each other; for example,
Dot calls Accumulate. \Ticks" is the total number of clock ticks spent in
the subroutine on PE 1. We use PE 1 for all timings because using any other
PE would yield similar results. We also give the percentage of the total time
spent in the given subroutine (Percent of Time), the number of calls to the
subroutine (Calls), and the average number of ticks per call (Avg. Ticks Per
Call).

Table 3 shows the matrix-vector multiply routine is by far the most ex-
pensive, taking between 85 and 98 percent of the total time. As discussed
before, we have poor caching performance in this routine because we ran-

11



domly access the vector �v when computing �A�v on each processor. In Table 5
we examine the speed-ups as we increase the number of PE's.

Let us �rst examine theMat-Vec Mult Routine in more detail. Table 4
gives the breakdown ofMat-Vec Mult for various values of p corresponding
to the con�gurations in Table 3. The routine is broken down into four basic
parts with the corresponding algorithm step numbers listed. (The algorithm
is given in Section 4.4.) Each piece is called 390 times, and the \Avg. Ticks
per Call" is based on this number. The \Percent of Time" gives the percent
of total time spent in this section of code.

p ph � pw Step(s) of Total Percent Avg. Ticks
Mat-Vec Mult Ticks of Time Per Call

16 2x8 Concatenate, 1-2 15004431 1 38472

Local Multiply, 3-8 2652885855 94 6802271

Scatter, 10-12 41451678 1 106268

Add Pieces, 14 56325153 2 144423

32 4x8 Concatenate, 1-2 15186453 1 38939

Local Multiply,3-8 1349871903 93 3461210

Scatter,10-12 21592497 1 55365

Add Pieces, 14 26394507 2 67678

64 4x16 Concatenate,1-2 8766255 1 22477

Local Multiply,3-8 626033167 85 1605213

Scatter,10-12 55081662 8 141235

Add Pieces,14 22533699 3 57778

128 8x16 Concatenate,1-2 11369712 3 29153

Local Multiply,3-8 319198700 80 818458

Scatter,10-12 32487237 8 83301

Add Pieces,14 11389872 3 29204

Table 4: Mat-Vec Mult Routine Breakdown

We see that the local matrix-vector multiply is the most expensive op-
eration that we do, taking between 80 and 94 percent of the total time.
Recall that this part requires no communications. The performance penalty
is primarily due to memory delays since we must randomly access the vector
�v to compute �A�v. Step 14 is also somewhat expensive (considering that we
are only adding some numbers), but this phenomena may also be due to the
fact that the pieces being added are not near each other in memory. Notice
how the times for \Concatenate" and \Add Pieces" vary - this is because
di�erent layouts and sizes have an e�ect on the communications. We will
not explore this issue in depth since the communication cost is such a small
factor in the overall program and we expect that optimized routines will
eventually be provided by Cray to do the types of communications we are
doing.

Table 5 shows the speed-up achieved in the entire program and in some
of the subroutines each time we double the number of processors. In this

12



case, speed-up from x! y processors is de�ned as

Time on y processors

Time on x processors
:

Subroutine Change in p
Name 16! 32 32! 64 64! 128

Entire Program 1.95 1.98 1.83

Accumulate .82 .87 .85

Mat-Vec Mult 1.96 2.25 1.67

Dot 1.53 1.31 1.10

Saxpy 1.99 1.98 1.89

Residual 1.95 1.98 1.89

Table 5: Speed-Up as the Number of Processors Increases

Our goal is to double the speed of the code each time we double the number
of processors. Because of Amdahl's Law (see [3]), we know that we can
not achieve an exact doubling, but our numbers come close when changing
between 16 and 32 PE's, and between 32 and 64 PE's. Since the Accumu-
late routine involves communications, we do not expect the time to get any
better, but in fact to worsen. The Mat-Vec Mult routine demonstrates
very strange behavior { this is directly inuenced by the cost of the com-
munications in that routine, not the computations. The Dot product also
did not do very well, but this is because it involves communications. Saxpy
had very good speed-up because it does not have any communications, and
the amount of work it does directly scales with the number of processors.
Despite the fact that Residual calls Mat-Vec Mult, it still scales well.

6 Conclusions

Our code achieves 306 MFlops on 64 processors. In comparison, a Cray YMP
single head gets 127 MFlops, a 128 processor iPSC/860 gets 181 MFlops,
and a 32,768 processor CM-2 gets 105 MFlops [5]. This performance, how-
ever, is not indicative of the peak performance of the Cray T3D. In fact, the
local computations impede our performance a great deal due to memory ac-
cess delays. An analysis of sparse vector operations on cache-based parallel
systems is something which may be worth pursuing. We have also observed
that di�erent layouts of the processor grid are worth exploring because it's
not always clear which layout will give the best performance. In our case,
this is due primarily to communications cost and the Mat-Vec Mult rou-
tine (which has communications and computations that are directly a�ected
by the layout of the grid). In other cases, however, we may want to break up
the matrix into rectangular blocks because of the matrix structure as well.

13



References

[1] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum,
et al. The NAS parallel benchmarks. Technical report, NASA Ames
Research Center, March 1994.

[2] Ray Barriuso and Allan Knies. Shmem user's guide. Technical report,
Cray Research, Inc., Eagan, MN, 1994.

[3] Dimitri P. Bertsekas and John N. Tsitsiklis. Parallel and Distributed

Computation: Numerical Methods. Prentice Hall, Englewood Cli�s, NJ
07632, 1989.

[4] Gene H. Golub and Charles F. van Loan. Matrix Computations. The
Johns Hopkins University Press, Baltimore, 2nd edition, 1989.

[5] John G. Lewis and Robert A. van de Geijn. Distributed memory matrix-
vector multiplication and conjugate gradient algorithms. In Supercom-

puting '93, Los Alamos, CA, 1993. IEEE Computer Society Press.

[6] Robert W. Numrich, Paul L. Springer, and John C. Peterson. Measure-
ment of communication rates on the Cray T3D interprocessor network.
In Proceedings HPCN Europe '94. Springer-Verlag, 1994.

14


