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Tensors are Multi-dimensional Arrays
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𝑑 = order of the tensor (the number of ways or modes)

multi-index shorthand

𝑛𝑘 = dimension of mode 𝑘, for 𝑘 = 1, 2, … , 𝑑

𝑖 ≡ (𝑖1, 𝑖2, …, 𝑖𝑑) = index into tensor, 𝑖𝑘 ∈ 1,… , 𝑛 for 𝑘 = 1, 2, … , 𝑑

For expositional simplicity: 𝑛 = 𝑛1 = 𝑛2 ⋯ = 𝑛d

3-way tensor

𝑛𝑑 = number of entries for 𝑑-way tensor of dimension 𝑛
Curse of 

Dimensionality

Curse of notation… 



Tensors Come From Many Applications
▪ Chemometrics: Emission x Excitation x Samples 

(Fluorescence Spectroscopy)

▪ Neuroscience: Neuron x Time x Trial (Calcium Imaging)

▪ Criminology: Day x Hour x Location x Crime (Chicago)
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Chemometrics Criminology

n
eu

ro
n

time

Neuroscience

Related Concepts 
for Matrices

• Singular value 

decomposition (SVD)

• Principal component 

analysis (PCA)

• Independent component 

analysis (ICA)

• Nonnegative matrix 

factorization (NMF) 

• Sparse matrix 

factorization

• Matrix completion



Goal is to Decompose Data Tensor
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Data



CANDECOMP/PARAFAC (CP) Model Depends 
on 𝑑 Factor Matrices of Size 𝑛 x 𝑟
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≈

CP also known as Canonical Polyadic. Hitchcock (1927), Carroll, Chang (1970), Harshman (1970)

Data Model Factor Matrices

defined by



“Rank” of Low-Rank Model is the Number of 
Columns in the Factor Matrices
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≈

Data Model Factor Matrices

defined by



CP Model: Sum of Outer Products of Columns 
of Factor Matrices
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≈

Data Model Sum of 𝑟 Outer Product Tensors Factor Matrices

defined by



CP Optimization Problem: Nonconvex Sum of 
Squared Errors
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≈

CP = CANDECOMP/PARAFAC, also known as Canonical Polyadic. Hitchcock (1927), Carroll, Chang (1970), Harshman (1970)

Data Model Sum of 𝑟 Outer Product Tensors Factor Matrices

defined by

C
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Low-Dimensional Manifold, Reducing Storage 
and Increasing Interpretability 
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≈

Data Model Sum of 𝑟 Outer Product Tensors Factor Matrices

defined by

C
P

 O
p

ti
m

iz
at

io
n

Storage for 
original data:

Storage for 
low-rank model:
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▪ A. H. Williams et al. Unsupervised Discovery of Demixed, 
Low-dimensional Neural Dynamics across Multiple 
Timescales through Tensor Components Analysis. 
Neuron, 2018

▪ D. Hong, T. G. Kolda, J. A. Duersch. Generalized Canonical 
Polyadic Tensor Decomposition. SIAM Review, in press, 
2019



Activity of Single Neuron Measured Over 
Time Produces Vector Data
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Thanks to Schnitzer Group @ Stanford
Mark Schnitzer, Fori Wang, Tony Kim

mouse
in maze

neural activity via 
calcium imaging

Microscope by
Inscopix

Williams et al., Neuron, 2018



Activity of Single Neuron Measured Over 
Time Produces Vector Data
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Thanks to Schnitzer Group @ Stanford
Mark Schnitzer, Fori Wang, Tony Kim

mouse
in maze

neural activity via 
calcium imaging

Microscope by
Inscopix

Williams et al., Neuron, 2018



Multiple Neurons Measured Over Time 
Produces Matrix
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Thanks to Schnitzer Group @ Stanford
Mark Schnitzer, Fori Wang, Tony Kim

mouse
in “maze” neural activity

× 111 time bins

Microscope by
Inscopix

282 neurons

Williams et al., Neuron, 2018



Multiple Trials Produces 3-way Tensor 
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wall

W

E

N

S

• 300 Trials over 5 Days
• Start West
• Conditions Swap Twice

❖ Turn South
❖ Turn North
❖ Turn South

282 neurons × 111 time bins × 300 trials
Williams et al., Neuron, 2018



Example Neuron Activity 
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Thin lines 
show 300 
individual 

trials

Thick line is 
average

Hong, Kolda, Duersch, SIAM Review, 2019



Neuron Factor Vector Visualized as Bar Chart
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≈

n
eu

ro
n

time

Hong, Kolda, Duersch, SIAM Review, 2019



Neuron Factor Vector Visualized as Bar Chart
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≈

n
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time

Neuron Modes Plotted as a Bar Chart 
(Red Lines Correspond to Examples in Prior Slide)

Hong, Kolda, Duersch, SIAM Review, 2019



Time Factor Vector Visualized as Line
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≈

n
eu
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n

time

Time (within trial) Plotted as a Line
(Dashed Line is Zero)

Hong, Kolda, Duersch, SIAM Review, 2019



Trial Factor Vector Visualized as 
Color-Coded Scatter Plot
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≈

n
eu

ro
n

time

Trial Plotted as Scatter Graph
Right turn = Green
Left turn = Orange

Filled = Reward

Rule
Change

Rule
Change

Hong, Kolda, Duersch, SIAM Review, 2019
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Visualization of CP Tensor Decomposition 
Shows the Factors (Vectors)

≈

n
eu

ro
n

time

Hong, Kolda, Duersch, SIAM Review, 2019
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CP Decomposition of Mouse Data
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CP Tensor Decomposition “Sees” Reward

Reward!
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CP Tensor Decomposition “Sees” Turn 
Direction

Turn Direction
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Reward!

Turn left

Turn right

Turn

CP Tensor Decomposition Yields 
Interpretation of a Complex Dataset
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Randomization Offers Powerful Tools, But 
Doesn’t Always Work “Out of the Box”
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Matrix Sketching Stochastic Gradient Descent

−

𝑁 × 𝑟

−

𝑠 × 𝑟

Under suitable conditions on 𝚽, achieve 𝜖-distortion whp:

Stochastic gradient:

random subset 
of indices

For suitable choice(s) of 𝛼, achieve SGD eventually 
converges to a stationary point.

Stochastic gradient descent (SGD):

Huge!

Huge!

Johnson, Lindenstrauss (1984), Ailon, Chazelle (2006), Woodruff (2014)

True gradient in expectation

Robbins, Monro (1951), Bottou, Curtis, Nocedal (2018)
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▪ C. Battaglino, G. Ballard, T. G. Kolda. A Practical Randomized CP 
Tensor Decomposition. SIAM Journal on Matrix Analysis and 
Applications, 2018

▪ R. Jin, T. G. Kolda, R. Ward. Faster Johnson-Lindenstrauss
Transforms via Kronecker Product. Coming soon, 2019

▪ T. G. Kolda, B. Larsen. Leverage Score Sampling for Randomized 
CP Tensor Decomposition. Coming soon, 2019



Recall the Optimization Problem
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≈

Data Model Sum of 𝑟 Outer Product Tensors Factor Matrices

defined by



We Can Rewrite the Tensor Optimization in 
Terms of Matrices
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≈

≈

“Khatri-Rao”
(Columnwise
Kronecker) 

Product

Tensor
Mode-k

“Unfolding”



Matrix Version Leads To Alternating Least 
Squares (ALS) Optimization Algorithm
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Computational complexity 
per least squares solve:

Alternating Least Squares (CP-ALS)

Constructing 𝐙𝑘 :

Very Tall and Skinny
Highly Overdetermined

≈

Idea: Use matrix sketching to solve
the highly overdetermined systems



Option 1: Johnson-Lindenstraus Transform
(Mixing and Sampling)
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≈

𝑁 × 𝑟

≈

𝑠 × 𝑟

Computational complexity:

Theoretical sample size

Sample Mixed Rows

No significant reduction in computational complexity due to cost in applying 𝚽!



Option 2: Fast JLT (FJLT)
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≈

𝑁 × 𝑟

≈

𝑠 × 𝑟

Computational complexity:

Sample Mixed Rows

FFT helps, but still dependence on N!

Theoretical sample size



Use Kronecker Structure to Reduce 
Computational Complexity
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Recall
Kronecker FJLT mixing:

We can mix first and then sample –
avoid every forming Z!

FJLT mixing:

Complexity:

Is this still a JLT? Yes (Jin-Kolda-Ward)!

“Khatri-Rao”
(Columnwise
Kronecker) 

Product

Complexity:



Avoid 𝑂(𝑁𝑟) cost to form 𝐙 by only
computing the sampled rows!

Option 4: Kronecker FJLT 
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≈

𝑁 × 𝑟

≈

𝑠 × 𝑟

Computational complexity:

Sample Mixed Rows

Special effort needed to avoid cost of mixing right-hand side… 



Randomized CP-ALS (CPRAND) 
Yields Speed-Ups as Problem Size Grows!
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Per-iteration Timing Comparison with 𝑟 = 5 (number of components) and 𝑠 = 90 (number of samples)

Note there is almost no change in number of iterations, so per-iteration speed-ups relevant

3-way tensor of size 𝑛 × 𝑛 × 𝑛 5-way tensor of size 𝑛 × 𝑛 × 𝑛 × 𝑛 × 𝑛



Matrix Sketching Only Worthwhile
If Structure Exploited

▪ CP-ALS is standard method for fitting 
tensor decomposition with tall + skinny 
least-squares methods at its heart

▪ Matrix sketching used within larger ALS 
algorithm – called many times!

▪ Naïve application of FJLT would be less 
efficient than direct solution

▪ Adapted principals for fast mixing to 
special Kronecker product structure –
resulting in huge complexity reduction

▪ Proved “Kronecker FJLT” is a low-
distortion embedding

▪ Working on leverage-score sampling as 
another alternative – requires clever 
crafting of sampling strategy
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Very Tall and Skinny
Highly Overdetermined

≈
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▪ D. Hong, T. G. Kolda, J. A. Duersch. Generalized Canonical 
Polyadic Tensor Decomposition. SIAM Review, in press, 
2019

▪ T. G. Kolda, D. Hong. Stochastic Gradients for Large-Scale 
Tensor Decomposition. arXiv:1906.01687, 2019



Recall the Optimization Problem Uses 
Sum of Squares Error (SSE)
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≈

Data Model Sum of 𝑟 Outer Product Tensors Factor Matrices

defined by

St
an

d
ar

d
 C

P
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Reward!

Turn left

Turn right

Turn

CP Tensor Decomposition Can be Tough to 
Interpret due to Negative Entries



Generalized CP (GCP) Allows for Different 
Loss Functions
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≈

Data Model Sum of 𝑟 Outer Product Tensors Factor Matrices

defined by

G
e

n
e

ra
liz

ed
 C

P



Welling & Webber, 2001; Cichocki & Phan, 2009; Chi & Kolda, 2009; Hong, Kolda, Duersch, SIAM Review, 2019

Alternative Loss Functions Allow Binary, 
Count, Nonnegative Data 
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Standard CP

Binary
(Odds Link)
𝒎 ≥ 𝟎

Binary
(Logit Link)

Count Data
(Identity Link)

𝒎 ≥ 𝟎

Count Data
(Log Link)

Nonnegative 
Data
𝒎 ≥ 𝟎

Nonnegative 
Data
𝒎 ≥ 𝟎

Nonnegative 
Data

(not MLE)
𝒎 ≥ 𝟎

“Robust”

“Failure” 
Count Data
(Odds Link)



GCP Decomposition with Beta Divergence 
(𝜷 = 𝟎. 𝟓, 𝒇 𝒙,𝒎 = 𝒎+ 𝒙/ 𝒎)
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Turn left

Turn right

Reward!

No reward!



Gradient-based Optimization Can Be Used 
for Fitting the GCP Model
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Define: Elementwise partial gradient tensor,
same size as data tensor = 𝑛𝑑

Gradients computed via a sequence of matricized-
tensor times Khatri-Rao product (MTTKRPs):

Define: Khatri-Rao product in all modes but
one of size 𝑛𝑑−1 × 𝑟

MTTKRPs can be computed efficiently…
• Bader & Kolda, SISC, 2007 – Dense and sparse
• Phan, Tichavsky, Cichocki, 2013 – Sequence
• Smith et al., IPDPS 2015 – Sparse 
• Kaya & Ucar, SC 2015 – Sparse 
• Li et al., IPDPS 2017 – Sparse 
• Hayashi et al., 2017 – Dense 
• Ballard, Knight, Rouse, 2017 – Dense 

tensor unfolded 
in mode 𝑘 into 

matrix

gradient for 
mode-𝑘 factor 

matrix

G
e

n
e

ra
liz

ed
 C

P



Stochastic gradient

Standard gradient

Stochastic Gradient Descent (SGD) for GCP 
Chooses Sparse Stochastic Y-Tensor
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Cost: 𝑂 𝑟𝑛𝑑 flops

Cost: 𝑂 𝑟𝑠 flops

Choose stochastic sparse Y-tensor

such that

By linearity of expectation:

G
e

n
e

ra
liz

ed
 C

P

Mode-𝑘 unfolding:

Khatri-Rao product of all factor 
matrices but one:



Uniform Sampling with Appropriate Weights 
Yields GCP Stochastic Gradient 
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Sample 𝑠 ≪ 𝑛𝑑 random tensor 
entries (with replacement)

Claim:

Proof:

Choosing 𝑠, the number of sampled elements…

• Choose 𝑠 = 𝑂(𝑛)

• Gradient = 𝑂 𝑟𝑠 = 𝑂 𝑟𝑛 versus 𝑂(𝑟𝑛𝑑)

Downside…

• If data tensor is sparse, few entries 
corresponding to nonzeros will be chosen

Th
eo

ry



For tensors, functionals equate to tensor entries, i.e., 𝑓𝑖 = 𝑓(𝑥𝑖 , 𝑚𝑖)

Biased sampling toward functionals with higher Lipschitz smoothness constants 
reduces variance in stochastic gradient (Needell, Srebro, & Ward, 2013)

Nonzeros Needed to Reduce Variance in 
Stochastic Gradient
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Consider Bernoulli with odds link:

Need to bias sampling to select more nonzeros in sparse tensors

Sparse Binary (0/1) Tensor



Stratified Zero/Nonzero Sampling
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Sample 𝑝 nonzeros and 𝑞 zeros.

Claim:

Proof:

Th
eo

ry
Sample

zeros

nonzeros

Explicit List

Implicit List (Requires Rejection Sampling)



Semi-Stratified Zero/Nonzero Sampling
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Idea: Sample “assumed zeros” from all indices and correct in nonzero samples. 

Sample 𝑝 nonzeros and 𝑞 assumed zeros.

Claim:

Proof:

Th
eo

ry

Samplenonzeros

zeros

Explicit List

Implicit List



GCP with Stochastic Optimization
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▪ Using Adam (Kingma & 
Ba, 2015) 
▪ Default parameters 

▪ Some tweaks for 
checking convergence

epoch = 1000 iterations
loss 

estimated 
with 

100,000 
fixed 

samples

initial step = 0.01

decrease step if 
F increases,

new step = 0.001

quit when
F increases again



Roughly O(𝑛) Samples Needed Per 
Stochastic Gradient
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200 × 150 × 100 × 50 Tensor (150M entries) with rank 𝑟 = 5. Gamma loss: 𝑓 𝑥,𝑚 =
𝑥

𝑚
+ log 𝑚.

Running Adam with 25 random starts and varying numbers of samples.

Recovery of Factor 
Matrices

Dashed lines: Individual runs, Solid lines: Median,
Epoch: Asterisk (success), Dot(fail).



Zooming Out: Stochastic Much Faster Than 
Non-Stochastic
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Same as 
prior 

slide, but 
rescaled 

x-axis

Each asterisk is an iteration.

200 × 150 × 100 × 50 Tensor (150M entries) with rank 𝑟 = 5. Gamma loss: 𝑓 𝑥,𝑚 =
𝑥

𝑚
+ log 𝑚.

Running Adam with 25 random starts and varying numbers of samples.



Uniform Sampling is Worse than Stratified 
for Sparse Tensors
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400 × 300 × 200 × 100 Tensor (2.4B entries, 9M nonzeros, 0.4% dense) with rank 𝑟 = 5.
Bernoulli loss: 𝑓 𝑥,𝑚 = log 𝑚 + 1 − 𝑥 log 𝑚. Using 𝑠 = 1000 samples, evenly divided for stratified and semi-stratified.



Chicago Crime Data
▪ 4-way count tensor

▪ 6,186 Days

▪ 24 Hours of the Day

▪ 77 Community Areas

▪ 32 Crime Types

▪ Non-zeros: 5,330,673
▪ 0.21GB for sparse tensor

▪ Distribution of entries
▪ 0: 98.54%

▪ 1: 1.33% 

▪ ≥ 2: 0.12%

▪ Obtained from FROSTT 
(http://frostt.io/tensors/chicago-crime/)

▪ Data originally from Chicago Data Portal 
(https://data.cityofchicago.org/Public-
Safety/Crimes-2001-to-present/ijzp-q8t2) 
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GCP-Count
Rank = 10

Samples 𝑠 = 6,319

𝑓 𝑥,𝑚 = 𝑚 − 𝑥 log 𝑚

http://frostt.io/tensors/chicago-crime/
https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/ijzp-q8t2


Application to Sparse Crime Binary Tensor
(Semi-stratified results)
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Component #1
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Component #3
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Component #6
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Stochastic Gradients Enables Significant 
Speed-Ups, But Need Smart Sampling

▪ GCP is tensor decomposition with 
modified objective function

▪ Stochastic version significantly 
faster

▪ Stratified sampling important for 
sparse problems

▪ Specialized semi-stratified yields 
greater computational efficiency

▪ Very few samples needed per 
iteration

▪ Stochastic methods (like Adam) 
need more robust foundations
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▪ S. Sherman, T. G. Kolda, Estimating Higher-Order 
Moments Using Symmetric Tensor Decomposition. 
Coming soon, 2019.



Empirical Higher-order Moments Measure 
Higher-Order Interactions
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Let vℓ ∈ ℝ
𝑛 for 𝑖 = 1,… , 𝑝 be the observations of the random variable 𝑉

(observation matrix)

1st order empirical moment:

2nd order empirical moment:

3rd order empirical moment: ⇔

Applications: Gaussian mixture models (GMMs), skewness/kurtosis estimation, moment matching, detecting outliers, etc.

(mean)

(covariance)

Interesting Fact: If 𝑉 is 
Gaussian with mean 

zero, then its 3rd order 
moment is zero!



Low-rank Symmetric Tensor Decomposition 
for Moment Tensors Exploits Structure
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Observation Tensor

Empirical 𝑑th-order Moment Tensor

Symmetric CP Decomposition with Rank 𝑟 ≪ 𝑝

𝑛 = 500, 𝑑 = 4 ⇒ storage = 500 GB

𝑛 = 2000, 𝑑 = 3 ⇒ storage = 64 GB

Storage/computation of O(𝑛𝑑) may be intractable

Key #1

Avoid forming moment tensor explicitly, 
reducing work from O(𝑝𝑛𝑑) to O(𝑝𝑛𝑟)



Implicit Method Much Faster For Gaussian 
Mixture Model Mean Identification
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For Large Number of Observations (p), Use 
Stochastic Moment Tensor
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Observation Tensor

Empirical 𝑑th-order Moment Tensor

Symmetric CP Decomposition with Rank 𝑟 ≪ 𝑝

Key #1

Avoid forming moment tensor explicitly, 
reducing work from O(𝑝𝑛𝑑) to O(𝑝𝑛𝑟)

Key #2

Use stochastic moment tensor, 
reducing work from O(𝑝𝑛𝑟) to O(s𝑛𝑟) with 𝑠 ≪ 𝑝



For Large Sample Size (𝑝) Stochastic 
Optimization Much Faster, Same Accuracy

▪ Fitting CP to tensors with 
structure much cheaper

▪ Moment tensors

▪ Also sparse tensors

▪ Even still, there is opportunity 
for improvements using 
randomized methods 

▪ Yet another example of 
computing a stochastic gradient 
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𝑠=10
Samples

Per Gradient
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Creativity + Randomization
= Improved Data Analysis

▪ Applied naively, randomization fails

▪ Computationally expensive to sketch/sample

▪ High error and/or slow convergence

▪ Sketching creates a smaller problem

▪ Mixing is expensive – make it cheaper or avoid it?

▪ Theoretical bounds much worse than practice - why?

▪ For subproblems – do things improve or get worse ?

▪ How can we handle missing data in sketches?

▪ Stochastic gradient descent uses cheap estimate

▪ Relationship to sketching largely unexplored

▪ Variance reduction – too little versus too much?

▪ More work needed on controlling step length

References Published/Posted
▪ A. H. Williams et al. Unsupervised Discovery of Demixed, 

Low-dimensional Neural Dynamics across Multiple 
Timescales through Tensor Components Analysis. Neuron,
2018

▪ C. Battaglino, G. Ballard, T. G. Kolda. A Practical Randomized 
CP Tensor Decomposition. SIAM Journal on Matrix Analysis 
and Applications, 2018

▪ D. Hong, T. G. Kolda, J. A. Duersch. Generalized Canonical 
Polyadic Tensor Decomposition. SIAM Review, in press, 2019

▪ T. G. Kolda, D. Hong. Stochastic Gradients for Large-Scale 
Tensor Decomposition. arXiv:1906.01687, 2019

References Coming Soon
▪ R. Jin, T. G. Kolda, R. Ward. Faster Johnson-Lindenstrauss

Transforms via Kronecker Product.
▪ T. G. Kolda, B. Larsen. Leverage Score Sampling for 

Randomized CP Tensor Decomposition.
▪ S. Sherman, T. G. Kolda, Estimating Higher-Order Moments 

Using Symmetric Tensor Decomposition. 

Papers & Slides
www.kolda.net

Tensor Toolbox for MATLAB
www.tensortoolbox.org 

Questions/Comments: tgkolda@sandia.gov


