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Symmetric Tensor Entries Invariant Under 
Permutation of Indices
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A tensor is symmetric if its entries are invariant under permutation of the indices

Example 1.2 from Nie (2014) 
3 × 3 × 3 symmetric tensor (10 distinct entries)

For 𝑑-way tensor, of dimension 𝑛, 
number of unique entries is:

𝑛

𝑛



Symmetric
CP Model

Sum of 𝑟 Symmetric
Outer Product Tensors

Symmetric CP Tensor Decomposition Has 
Single Factor Matrix
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≈ defined by

Symmetric
Data

Single
Factor Matrix

Model Rank



Symmetric Tensor Rank & Decomposition

▪ Symmetric tensor rank
▪ For any given tensor, NP-hard to compute 

its rank (Hillar & Lim, 2013)

▪ Typical rank known over ℂ (Comon, Golub, 
Lim, Mourraine, 2008) 

▪ In practice, trial and error!

▪ Symmetric tensor decomposition
▪ Waring decomposition (Landsberg, 2012; 

Oeding & Ottaviani, 2013)

▪ Gröbner bases algebraic methods or 
numerical root-finding method (Nie, 2014)

▪ Direct optimization formulation 
(Kolda, 2015)

▪ Subspace power method 
(Kileel & Pereira, 2019)
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Example 1.2 from Nie (2014) 
3 × 3 × 3 symmetric tensor (10 distinct entries)

Rank decomposition



Moment Tensors Arise in Inference of 
Gaussian Mixture Models (GMMs)
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For ease of illustration, we focus on 𝑛 = 2 dimensions. 
Generally interested in much higher dimensions, i.e, 𝑛 = 500!

Given just the 
samples 

(point cloud), 
can we recover 

the means?



Machine Learning Motivation: Observations 
from Unknown Mixture of Gaussians
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We observe 𝑝 random vectors of length 𝑛 coming from a mixture of 𝑟 Gaussian distributions. 
Can we recover the means of the Gaussians?

Easy: Means Well Separated Hard: Means Close Together

For these pictures: 𝑝 = 1000, 𝑛 = 3, 𝑟 = 3. Means shown as filled in larger circles. Samples as open circles.
We care about larger values of 𝑛!



Moment Structure for Spherical GMMs 
Corresponds to CP Model
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Hsu and Kakade, 2013

Data Model:

3rd-order Moment:

Multivariate Normal Probability to select 𝑗th center is 𝑤𝑗

CP-like Model
Calculate 

empirically from 
data

Simplifying assumptions 
for this work

Bottlenecks: 

𝑂 𝑝𝑛𝑑 to compute, 

𝑂(𝑛𝑑) to store

Example: 𝑛 = 128, 𝑑 = 4 ⇒ storage = 2 GB

Example: 𝑛 = 512, 𝑑 = 3 ⇒ storage = 1 GB
Can also do higher -

order moments



Our Focus Today: Accelerating Computation 
for Special Case of Moment Tensors
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Optimization Approach for Symmetric CP of 
Symmetric Tensor Requires TTSV
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Optimization
Problem

Gradients

Key Kernel:
Tensor Times 
Single Vector 

(TTSV)

Bottleneck is TTSV

which costs 𝑂 𝑛𝑑

Plug function and 
gradient into favorite 
optimization method. 
My favorite: L-BFGS.



Key Result: Implicit Computation of TTSV
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𝑂(𝑝𝑛)𝑂(𝑛𝑑)

TTSV Definition:

Entry-wise Power



Minimal Change in Function/Gradient 
Calculation Replaces Expensive TTSV
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Implicit up to 16X Faster than Explicit for
Smaller Problems
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Method Storage Per-Iteration

Explicit 𝑂 𝑛𝑑 𝑂 𝑟𝑛𝑑

Implicit 𝑂(𝑝𝑛) 𝑂(𝑝𝑛𝑟)

Rank-𝑟 Symmetric CP Tensor Factorization 
for 𝑑-way tensor of size 𝑛

𝑟 < 𝑛 < 𝑝

Implicit cheaper if 𝑝 < 𝑂(𝑛𝑑−1)

𝑑 𝑛 𝑝 𝑛𝑑−1 Explicit Implicit Ratio

3 75 3750 5625 5e-4 sec. 8e-4 sec. 1x

3 375 3750 140625 2e-2 5e-3 5x

4 75 3750 421875 1e-2 9e-4 16x

Average cost per iteration for 𝑟 = 5 over 10 runs



GMM Example with 𝑟=5 (components), 𝑛=500 
(dim.), 𝝈=.1 (noise), and 𝑝=1250 (obs.)
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Random 2D Projection

For 𝑑 = 3,
explicit method
requires 1 GB

storage

For 𝑑 =4,
explicit method
requires 500 GB

storage



GMM Example with 𝑟=5 (components), 𝑛=500 
(dim.), 𝝈=.1 (noise), and 𝑝=1250 (obs.)
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Random 2D Projection, Color-Coded by Component



GMM Example with 𝑟=5 (components), 𝑛=500 
(dim.), 𝝈=.1 (noise), and 𝑝=1250 (obs.)
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Random 2D Projection, Color-Coded by Component, With Means Denoted



Identified Factors for ො𝒓=5 
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Random 2D Projection, Color-Coded by Component, With Means Denoted



Identified Factors for ො𝒓=3 
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Random 2D Projection, Color-Coded by Component, With Means Denoted



Identified Factors for ො𝒓=4 
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Random 2D Projection, Color-Coded by Component, With Means Denoted



Identified Factors for ො𝒓=6 
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Random 2D Projection, Color-Coded by Component, With Means Denoted



Identified Factors for ො𝒓=7 
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Random 2D Projection, Color-Coded by Component, With Means Denoted



GMM Performance for Third-Order (𝑑=3)
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Varying Noise

Varying Number of
Computed Components
(Over/Under Estimate)

Varying Number of
True Components

Best Error over 10 Runs
Compared to

Empirical Moment Tensor

Average Cosine of Angle
Between True Means

and Computed
(1 = perfect match)

Total Time for Ten Runs



GMM Performance for Fourth-Order (𝑑=4)
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Varying Noise

Varying Number of
Computed Components
(Over/Under Estimate)

Varying Number of
True Components

Best Error over 10 Runs
Compared to

Empirical Moment Tensor

Average Cosine of Angle
Between True Means

and Computed
(1 = perfect match)

Total Time for Ten Runs



Choosing Starting Guess Within Range of 
Observations is Key for Low Noise!
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Randomized Range Finder (RRF):

Random:

Results of  computing 
Ƹ𝑟 = 3 approximation for 

moment tensor of order 𝑑 = 3, 
with 

𝑟 = 3 components, 
𝑛 = 500 dimensions, and 
𝑝 = 750 observations

[with columns normalized in both cases]



For Massive Numbers of Observations, Use 
Stochastic Variants

6/29/2020 Kolda - MDS2020 - Recent Advances in the Method of Moments 23

Example Results
Ƹ𝑟 = 𝑟 = 10, 𝑛 = 500,
𝜎 = 0.1, 𝑑 = 3
𝑝 = 100,000

Sample columns
with replacement



Speed Advantage for Stochastic Methods
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Best Runs (of 10)
Ƹ𝑟 = 𝑟 = 10, 𝑛 = 500, 𝜎 = 0.1, 𝑑 = 3, 𝑝 = 100,000
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Conclusions and 
Future Work

▪ In data analysis, 𝑑th-order moment is expensive to compute – instead 
work with implicit moment
▪ Reduces storage from 𝑂(𝑛𝑑) to 𝑂 𝑛𝑝
▪ Reduces computation per iteration from 𝑂(𝑟𝑛𝑑) to 𝑂 𝑟𝑛𝑝

▪ Shows promise for fitting spherical GMMs
▪ Example with 𝑛 = 500 (dimension), 𝑟 ∈ {3,5,10} (components), 𝑝 = 250𝑟, 

Ƹ𝑟 ∈ 𝑟 − 2,… , 𝑟 + 2 , and 𝑑 = 3,4 (orders)
▪ Future work will incorporate lower-order terms, different 𝜎 for each 

component, multiple values for 𝑑 simultaneously, etc. 

▪ Many extensions possible, e.g., for subspace power method
▪ Reference: S. Sherman, T. G. Kolda. Estimating Higher-Order Moments 

Using Symmetric Tensor Decomposition, to appear in SIMAX, 
arXiv:1911.03813

http://arxiv.org/abs/1911.03813

